Spelling suggestions: "subject:"erientation cotensor"" "subject:"erientation condensor""
1 |
Detektering av sprickor i vägytor med hjälp av Datorseende / Pavement Crack Detection Using Computer VisionHåkansson, Staffan January 2005 (has links)
<p>This thesis describes new methods for automatic crack detection in pavements. Cracks in pavements can be used as an early indication for the need of reparation. </p><p>Automatic crack detection is preferable compared to manual inventory; the repeatability can be better, the inventory can be done at a higher speed and can be done without interruption of the traffic. </p><p>The automatic and semi-automatic crack detection systems that exist today use Image Analysis methods. There are today powerful methods available in the area of Computer Vision. These methods work in higher dimensions with greater complexity and generate measures of local signal properties, while Image Analyses methods for crack detection use morphological operations on binary images. </p><p>Methods for digitalizing video data on VHS-cassettes and stitching images from nearby frames have been developed. </p><p>Four methods for crack detection have been evaluated, and two of them have been used to form a crack detection and classification program implemented in the calculation program Matlab. </p><p>One image set was used during the implementation and another image set was used for validation. The crack detection system did perform correct detection on 99.2 percent when analysing the images which were used during implementation. The result of the crack detection on the validation data was not very good. When the program is being used on data from other pavements than the one used during implementation, information about the surface texture is required to calibrate the crack detection.</p>
|
2 |
Detektering av sprickor i vägytor med hjälp av Datorseende / Pavement Crack Detection Using Computer VisionHåkansson, Staffan January 2005 (has links)
This thesis describes new methods for automatic crack detection in pavements. Cracks in pavements can be used as an early indication for the need of reparation. Automatic crack detection is preferable compared to manual inventory; the repeatability can be better, the inventory can be done at a higher speed and can be done without interruption of the traffic. The automatic and semi-automatic crack detection systems that exist today use Image Analysis methods. There are today powerful methods available in the area of Computer Vision. These methods work in higher dimensions with greater complexity and generate measures of local signal properties, while Image Analyses methods for crack detection use morphological operations on binary images. Methods for digitalizing video data on VHS-cassettes and stitching images from nearby frames have been developed. Four methods for crack detection have been evaluated, and two of them have been used to form a crack detection and classification program implemented in the calculation program Matlab. One image set was used during the implementation and another image set was used for validation. The crack detection system did perform correct detection on 99.2 percent when analysing the images which were used during implementation. The result of the crack detection on the validation data was not very good. When the program is being used on data from other pavements than the one used during implementation, information about the surface texture is required to calibrate the crack detection.
|
3 |
Tensor baseado em fluxo óptico para descrição global de movimento em vídeosMota, Virgínia Fernandes 28 February 2011 (has links)
Submitted by Renata Lopes (renatasil82@gmail.com) on 2017-03-02T19:31:32Z
No. of bitstreams: 1
virginiafernandesmota.pdf: 2597727 bytes, checksum: df1d36b8c756398774e8649591f66a32 (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2017-03-06T20:02:23Z (GMT) No. of bitstreams: 1
virginiafernandesmota.pdf: 2597727 bytes, checksum: df1d36b8c756398774e8649591f66a32 (MD5) / Made available in DSpace on 2017-03-06T20:02:23Z (GMT). No. of bitstreams: 1
virginiafernandesmota.pdf: 2597727 bytes, checksum: df1d36b8c756398774e8649591f66a32 (MD5)
Previous issue date: 2011-02-28 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Movimento é uma das características fundamentais que refletem a informação semântica
em vídeos. Uma das técnicas de estimativa do movimento é o cálculo do fluxo óptico.
Este é uma representação 2D (bidimensional) das velocidades aparentes de uma sequência
de quadros (frames) adjacentes, ou seja, a projeção 2D do movimento 3D (tridimensional)
projetado na câmera.
Neste trabalho é proposto um descritor global de movimento baseado no tensor de
orientação. O mesmo é formado à partir dos coeficientes dos polinômios de Legendre
calculados para cada quadro de um vídeo. Os coeficientes são encontrados através da
projeção do fluxo óptico nos polinômios de Legendre, obtendo-se uma representação polinomial
do movimento.
O descritor tensorial criado é avaliado classificando-se a base de vídeos KTH com um
classificador SVM (máquina de vetor de suporte). É possível concluir que a precisão da
abordagem deste trabalho supera às encontradas pelos descritores globais encontrados na
literatura. / Motion is one of the main characteristics that describe the semantic information of videos.
One of the techniques of motion estimation is the extraction of optical flow. The optical
flow is a bidimensional representation of velocities in a sequence of adjacent frames, in
other words, is the 2D projection of the 3D motion projected on the camera.
In this work it is proposed a global video descriptor based on orientation tensor. This
descriptor is composed by coefficients of Legendre polynomials calculated for each video
frame. The coefficients are found though the projection of the optical flow on Legendre
polynomials, obtaining a polynomial representation of the motion.
The tensorial descriptor created is evaluated by a classification of the KTH video
database with a SVM (support vector machine) classifier. Results show that the precision
of our approach is greater than those obtained by global descriptors in the literature.
|
4 |
Um descritor tensorial de movimento baseado em múltiplos estimadores de gradienteSad, Dhiego Cristiano Oliveira da Silva 22 February 2013 (has links)
Submitted by Renata Lopes (renatasil82@gmail.com) on 2017-05-30T19:45:09Z
No. of bitstreams: 1
dhiegocristianooliveiradasilvasad.pdf: 1920111 bytes, checksum: c7bccda6c65e798776738b9581721c98 (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2017-06-01T11:37:10Z (GMT) No. of bitstreams: 1
dhiegocristianooliveiradasilvasad.pdf: 1920111 bytes, checksum: c7bccda6c65e798776738b9581721c98 (MD5) / Made available in DSpace on 2017-06-01T11:37:10Z (GMT). No. of bitstreams: 1
dhiegocristianooliveiradasilvasad.pdf: 1920111 bytes, checksum: c7bccda6c65e798776738b9581721c98 (MD5)
Previous issue date: 2013-02-22 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Este trabalho apresenta uma nova abordagem para a descrição de movimento em
vídeos usando múltiplos filtros passa-banda que agem como estimadores derivativos de
primeira ordem. A resposta dos filtros em cada quadro do vídeo é extraída e codificada
em histogramas de gradientes para reduzir a sua dimensionalidade. Essa combinação
é realizada através de tensores de orientação. O grande diferencial deste trabalho em
relação à maioria das abordagens encontradas na literatura é que nenhuma característica
local é extraída e nenhum método de aprendizagem é realizado previamente, isto é, o
descritor depende unicamente do vídeo de entrada. Para o problema de reconhecimento
da ação humana utilizando a base de dados KTH, nosso descritor alcançou a taxa de
reconhecimento de 93,3% usando três filtros da família Daubechies combinado com mais
um filtro extra que é a correlação entre esses três filtros. O descritor resultante é então
classificado através do SVM utilizando um protocolo two-fold. Essa classificação se mostra
superior para a maioria das abordagens que usam descritores globais e pode ser comparável
aos métodos do estado-da-arte. / This work presents a novel approach for motion description in videos using multiple
band-pass filters that act as first order derivative estimators. The filters response on each
frame are coded into individual histograms of gradients to reduce their dimensionality.
They are combined using orientation tensors. No local features are extracted and no
learning is performed, i.e., the descriptor depends uniquely on the input video. Motion
description can be enhanced even using multiple filters with similar or overlapping fre
quency response. For the problem of human action recognition using the KTH database,
our descriptor achieved the recognition rate of 93,3% using three Daubechies filters, one
extra filter designed to correlate them, two-fold protocol and a SVM classifier. It is su
perior to most global descriptor approaches and fairly comparable to the state-of-the-art
methods.
|
5 |
A video descriptor using orientation tensors and shape-based trajectory clusteringCaetano, Felipe Andrade 29 August 2014 (has links)
Submitted by Renata Lopes (renatasil82@gmail.com) on 2017-06-06T17:54:07Z
No. of bitstreams: 1
felipeandradecaetano.pdf: 7461489 bytes, checksum: 93cea870d7bf162be4786d1d6ffb2ec9 (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2017-06-07T11:06:08Z (GMT) No. of bitstreams: 1
felipeandradecaetano.pdf: 7461489 bytes, checksum: 93cea870d7bf162be4786d1d6ffb2ec9 (MD5) / Made available in DSpace on 2017-06-07T11:06:08Z (GMT). No. of bitstreams: 1
felipeandradecaetano.pdf: 7461489 bytes, checksum: 93cea870d7bf162be4786d1d6ffb2ec9 (MD5)
Previous issue date: 2014-08-29 / Trajetórias densas têm se mostrado um método extremamente promissor na área de
reconhecimento de ações humanas. Baseado nisso, propomos um novo tipo de descritor
de vídeos, calculado a partir da relação do fluxo ótico que compõe a trajetória com o
gradiente de sua vizinhança e sua localidade espaço-temporal. Tensores de orientação são
usados para acumular informação relevante ao longo do vídeo, representando tendências
de direção do descritor para aquele tipo de movimento. Além disso, um método para
aglomerar trajetórias usando o seu formato como métrica é proposto. Isso permite acu-
mular características de movimentos distintos em tensores separados e diferenciar com
maior facilidade trajetórias que são criadas por movimentos reais das que são geradas a
partir do movimento de câmera. O método proposto foi capaz de atingir os melhores níveis
de reconhecimento conhecidos para métodos com a restrição de métodos autodescritores
em bases populares — Hollywood2 (Acima de 46%) e KTH (Acima de 94%). / Dense trajectories has been shown as a very promising method in the human action
recognition area. Based on that, we propose a new kind of video descriptor, calculated
from the relationship between the trajectory’s optical flow with the gradient field in its
neighborhood and its spatio-temporal location. Orientation tensors are used to accumulate relevant information over the video, representing the tendency of direction for that
kind of movement. Furthermore, a method to cluster trajectories using their shape is
proposed. This allow us to accumulate different motion patterns in different tensors and
easier distinguish trajectories that are created by real movements from the trajectories
generated by the camera’s movement. The proposed method is capable to achieve the best
known recognition rates for methods based on the self-descriptor constraint in popular
datasets — Hollywood2 (up to 46%) and KTH (up to 94%).
|
6 |
Rigid registration based on local geometric dissimilarityCejnog, Luciano Walenty Xavier 21 September 2015 (has links)
Submitted by Renata Lopes (renatasil82@gmail.com) on 2017-06-07T15:41:47Z
No. of bitstreams: 1
lucianowalentyxaviercejnog.pdf: 14234810 bytes, checksum: 492ebb7393b5f0e7cfc6e822067fe492 (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2017-06-24T13:12:44Z (GMT) No. of bitstreams: 1
lucianowalentyxaviercejnog.pdf: 14234810 bytes, checksum: 492ebb7393b5f0e7cfc6e822067fe492 (MD5) / Made available in DSpace on 2017-06-24T13:12:44Z (GMT). No. of bitstreams: 1
lucianowalentyxaviercejnog.pdf: 14234810 bytes, checksum: 492ebb7393b5f0e7cfc6e822067fe492 (MD5)
Previous issue date: 2015-09-21 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Este trabalho visa melhorar um método clássico para o problema de registro rígido, o ICP (iterative Closest Point), fazendo com que a busca dos pontos mais próximos, uma de suas fases principais, considere informações aproximadas da geometria local de cada ponto combinadas à distância Euclidiana originalmente usada. Para isso é necessária uma etapa de pré-processamento, na qual a geometria local é estimada em tensores de orientação de segunda ordem. É definido o CTSF, um fator de similaridade entre tensores. O ICP é alterado de modo a considerar uma combinação linear do CTSF com a distância Euclidiana para estabelecer correspondências entre duas nuvens de pontos, variando os pesos relativos entre os dois fatores. Isso proporciona uma capacidade maior de convergência para ângulos maiores em relação ao ICP original, tornando o método comparável aos que constituem o estado da arte da área. Para comprovar o ganho obtido, foram realizados testes exaustivos em malhas com características geométricas variadas, para diferentes níveis de ruído aditivo, outliers e em casos de sobreposição parcial, variando os parâmetros do método de estimativa dos tensores. Foi definida uma nova base com malhas sintéticas para os experimentos, bem como um protocolo estatístico de avaliação quantitativa. Nos resultados, a avaliação foi feita de modo a determinar bons valores de parâmetros para malhas com diferentes características, e de que modo os parâmetros afetam a qualidade do método em situações com ruído aditivo, outliers, e sobreposição parcial. / This work aims to enhance a classic method for the rigid registration problem, the ICP (Iterative Closest Point), modifying one of its main steps, the closest point search, in order to consider approximated information of local geometry combined to the Euclidean distance, originally used. For this, a preprocessing stage is applied, in which the local geometry is estimated in second-order orientation tensors. We define the CTSF, a similarity factor between tensors. Our method uses a linear combination between this factor and the Euclidean distance, in order to establish correspondences, and a strategy of weight variation between both factors. This increases the convergence probability for higher angles with respect to the original ICP, making our method comparable to some of the state-of-art techniques. In order to comprove the enhancement, exhaustive tests were made in point clouds with different geometric features, with variable levels of additive noise and outliers and in partial overlapping situations, varying also the parameters of the tensor estimative method. A dataset of synthetic point clouds was defined for the experiments, as well as a statistic protocol for quantitative evaluation. The results were analyzed in order to highlight good parameter ranges for different point clouds, and how these parameters affect the behavior of the method in situations of additive noise, outliers and partial overlapping.
|
7 |
A Shape-based weighting strategy applied to the covariance estimation on the ICPYamada, Fernando Akio de Araujo 15 March 2016 (has links)
Submitted by Renata Lopes (renatasil82@gmail.com) on 2017-06-07T17:49:03Z
No. of bitstreams: 1
fernandoakiodearaujoyamada.pdf: 21095203 bytes, checksum: 1842e801a538bdeef0368c963b9d98b7 (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2017-06-24T13:47:22Z (GMT) No. of bitstreams: 1
fernandoakiodearaujoyamada.pdf: 21095203 bytes, checksum: 1842e801a538bdeef0368c963b9d98b7 (MD5) / Made available in DSpace on 2017-06-24T13:47:22Z (GMT). No. of bitstreams: 1
fernandoakiodearaujoyamada.pdf: 21095203 bytes, checksum: 1842e801a538bdeef0368c963b9d98b7 (MD5)
Previous issue date: 2016-03-15 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / No problema de registro rígido por pares é preciso encontrar uma transformação rígida que alinha duas nuvens de pontos. A sulução clássica e mais comum é o algoritmo Iterative Closest Point (ICP). No entanto, o ICP e muitas de suas variantes requerem que as nuvens de pontos já estejam grosseiramente alinhadas. Este trabalho apresenta um método denominado Shape-based Weighting Covariance Iterative Closest Point (SWC-ICP), uma melhoria do ICP clássico. A abordagem proposta aumenta a possibilidade de alinhar corretamente duas nuvens de pontos, independente da pose inicial, mesmo quando existe apenas sobreposição parcial entre elas, ou na presença de ruído e outliers. Ela se beneficia da geometria local dos pontos, codificada em tensores de orientação de segunda ordem, para prover um segundo conjunto de correspondências para o ICP. A matriz de covariância cruzada computada a partir deste conjunto é combinada com a matriz de covariância cruzada usual, seguindo uma estratégia heurística. Para comparar o método proposto com algumas abordagens recentes, um protocolo de avaliação detalhado para registro rígido é apresentado. Os resultados mostram que o SWC-ICP está entre os melhores métodos comparados, com performance superior em situações de grande deslocamento angular, mesmo na presença de ruído e outliers. / In the pairwise rigid registration problem we need to find a rigid transformation that aligns two point clouds. The classical and most common solution is the Iterative Closest Point (ICP) algorithm. However, the ICP and many of its variants require that the point clouds are already coarsely aligned. We present in this work a method named Shape-based Weighting Covariance Iterative Closest Point (SWC-ICP), an improvement over the classical ICP. Our approach improves the possibility to correctly align two point clouds, regardless of the initial pose, even when there is only a partial overlapping between them, or in the presence of noise and outliers. It benefits from the local geometry of the points, encoded in second-order orientation tensors, to provide a second correspondences set to the ICP. The cross-covariance matrix computed from this set is combined with the usual cross-covariance matrix following a heuristic strategy. In order to compare our method with some recent approaches, we present a detailed evaluation protocol to rigid registration. Results show that the SWC-ICP is among the best methods compared, with superior performance in situations of wide angular displacement, even in situations of noise and outliers.
|
Page generated in 0.1182 seconds