• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 9
  • 3
  • 2
  • 2
  • Tagged with
  • 43
  • 25
  • 12
  • 11
  • 9
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

TALLYHO/JngJ as a model for type 2 diabetes-induced bone disease

Emini, Lejla 12 August 2024 (has links)
Der Typ-2-Diabetes mellitus (T2DM) wird mit einem erhöhten Frakturrisiko in Verbindung gebracht, welches auf krankheitsspezifische Defizite in der Knochenmikrostruktur und -qualität zurückzuführen ist. Da die zugrundeliegenden Mechanismen unzureichend verstanden sind, kommen präklinische Modelle, welche die diabetische Knochenerkrankung nachbilden, zur Erforschung der Pathogenese zum Einsatz. Die TallyHo/JngJ (TH)-Maus ist ein polygenes Modell für spontan auftretenden T2DM und Adipositas, welches den T2DM im Jugendalter beim Menschen rekapituliert. Aufgrund der unvollständigen Penetranz des Phänotyps entwickeln ~25 % der männlichen TH-Mäuse nie eine Hyperglykämie und können somit als nicht-diabetische Kontrolltiere mit identischen genetischen Background verwendet werden. Im Rahmen dieser Arbeit verwendeten wir männliche diabetische TH-Mäuse im Alter von zwölf Wochen für eine umfassende Charakterisierung des metabolischen und skelettalen Phänotyps und verglichen sie entweder mit altersgleichen nicht-diabetischen TH-Kontrollen oder mit den empfohlenen SWR/J-Kontrollen. Männliche TH-Mäuse mit T2DM zeigten eine Hyperglykämie und ein höheres Gewicht zusammen mit einer gestörten Glukosetoleranz und Insulinresistenz im Vergleich zu SWR/J und nicht-diabetischen TH-Kontrollen. Anhand der Mikro-Computertomographie (μCT) konnten festgestellt werden, dass TH-Mäuse mit T2DM ein erhöhtes kortikales Knochenvolumen und eine gesteigerte kortikale Knochendicke am Femur aufwiesen, während sie im Vergleich zu den SWR/J-Kontrollen einen trabekulären Knochenverlust sowohl im Femur als auch im Wirbelkörper zeigten. Trotz des trabekulären Knochenverlusts bei TH-Mäusen konnten wir keine Unterschiede im Bezug zum Knochenumbau feststellen, welcher anhand von Histomorphometrie und Serummarker zwischen diabetischen und nicht-diabetischen TH-Mäusen bestimmt wurde. Im Vergleich zu den SWR/J-Mäusen waren die Serum-Konzentrationen von Knochenumbaumarker P1NP und TRAcP5b bei TH-Mäusen niedriger, was darauf hindeutet, dass der SWR/J-Stamm per se einen höheren Knochenumsatz aufweisen könnte. Die biomechanischen Eigenschaften wurden mit einem 3-Punkt-Biegetest am Femur und einem Kompressionstest an der Wirbelsäule (L4) geprüft. Während es keine Unterschiede in der Knochenstärke des Femurs zwischen allen drei Gruppen gab, zeigte der Kompressionstest, dass der L4-Wirbelkörper von SWR/J-Mäusen im Vergleich zu den beiden Untergruppen der TH-Mäuse stärker waren. Im Rahmen der Osteozytencharakterisierung wurde eine niedrigere Anzahl von Osteozyten und ihren Dendriten bei TH-Mäusen mit T2DM durch Silbernitratfärbung im trabekulären Knochen des Femurs festgestellt. Die dreidimensionale Auswertung des ultrahochauflösenden μCT zeigte ein höheres Lakunenvolumen und eine höhere Lakunendichte bei SWR/J-Tieren im Vergleich zu beiden TH-Untergruppen im trabekulären und kortikalen Knochen des Femurs und des Wirbelkörpers. Weiterhin wurden Veränderungen in der Morphologie der Lakunen beobachtet wurden, wobei die Osteozyten bei TH-Mäusen mit T2DM im Vergleich zu SWR/J weniger kugelförmig, dafür aber gestreckter waren, was darauf hindeutet, dass die Form der Osteozyten ein Kompensationsmechanismus für die geringe Knochenmasse sein könnte. Eine hochkalorische Ernährung ist die Hauptursache für das Fortschreiten von Adipositas und T2DM. Daher ist eine diätetische Intervention, wie z. B. eine Kalorienrestriktion und eine Änderung der Ernährungszusammensetzung, ein wichtiger Behandlungsansatz zur Verbesserung der T2DM-Symptomatik. Es konnte gezeigt werden, dass eine ballaststoffreiche Ernährung die Hyperglykämie verbessert, die Hyperinsulinämie abschwächt und Entzündungen im Zusammenhang mit T2DM reduziert. Der Einfluss einer ballaststoffreiche Ernährung auf die Knochengesundheit im T2DM Kontext wurde jedoch bislang nicht erforscht. In unserer Studie verwendeten wir TH-Mäuse mit T2DM, die entweder mit einer Kontrolldiät oder einer ballaststoffreichen Diät gefüttert wurden. Wir konnten bestätigen, dass eine ballaststoffreiche Ernährung die T2DM-Symptome bei diabetischen TH-Mäusen verbessert. Während die ballaststoffreiche Ernährung keinen Effekt auf die kortikale oder trabekuläre Knochenstruktur im Femur bei diabetischen TH-Mäusen hatte, konnten wir eine geringere trabekuläre Knochenmasse in den Wirbelkörpern beobachteten. Eine ballaststoffreiche Ernährung hatte in beiden Gruppen keinen Einfluss auf die biomechanischen Eigenschaften von Oberschenkel- und Wirbelknochen. Anhand histomorphometrischer Analysen konnten wir eine Tendenz zur verstärkten Knochenformation nachweisen, jedoch war die Expression von Genen, die mit der Knochenbildung und dem WNT-Signalweg zusammenhängen, nicht verändert. Zusammenfassend zeigt diese Doktorarbeit die wesentlichen Charakteristika und potenziellen Einschränkungen der TALLYHO/JngJ- und SWR/J-Mausmodelle bei der Untersuchung von T2DM und dessen Auswirkungen auf die Knochengesundheit auf. Da sich die Knochenmikroarchitektur zwischen diabetischen und nichtdiabetischen TH-Mäusen nicht unterschied, ist diese Mauslinie kein ideales Modell zur Untersuchung diabetischer Knochenerkrankungen. Dennoch verbesserte eine ballaststoffreiche Ernährung den T2DM an sich, was bestätigt, dass TALLYHO/JngJ-Mäuse ein geeignetes präklinisches Modell sind, um die dem T2DM zugrundeliegenden Mechanismen abseits des Knochengewebes zu untersuchen. Diese Ergebnisse verdeutlichen uns die Notwendigkeit der Erforschung weiterer repräsentativerer Tiermodelle, um unser Verständnis von T2DM-bedingten Knochenerkrankungen zu verbessern.
42

Intranuclear Trafficking of RUNX/AML/CBFA/PEBP2 Transcription Factors in Living Cells: A Dissertation

Harrington, Kimberly Stacy 28 March 2003 (has links)
The family of runt related transcription factors (RUNX/Cbfa/AML/PEBP2) are essential for cellular differentiation and fetal development. RUNX factors are distributed throughout the nucleus in punctate foci that are associated with the nuclear matrix/scaffold and generally correspond with sites of active transcription. Truncations of RUNX proteins that eliminate the C-terminus including a 31-amino acid segment designated the nuclear matrix targeting signal (NMTS) lose nuclear matrix association and result in lethal hematopoietic (RUNX1) and skeletal (RUNX2) phenotypes in mice. These findings suggest that the targeting of RUNX factors to subnuclear foci may mediate the formation of multimeric regulatory complexes and contribute to transcriptional control. In this study, we hypothesized that RUNX transcription factors may dynamically move through the nucleus and associate with subnuclear domains in a C-terminal dependent mechanism to regulate transcription. Therefore, we investigated the subnuclear distribution and mobility of RUNX transcription factors in living cells using enhanced green fluorescent protein (EGFP) fused to RUNX proteins. The RUNX C-terminus was demonstrated to be necessary for the dynamic association of RUNX with stable subnuclear domains. Time-lapse fluorescence microscopy showed that RUNX1 and RUNX2 localize to punctate foci that remain stationary in the nuclear space in living cells. By measuring fluorescence recovery after photobleaching, both RUNX1 and RUNX2 were found to dynamically and rapidly associate with these subnuclear foci with a half-time of recovery in the ten-second time scale. A large immobile fraction of RUNX1 and RUNX2 proteins was observed in the photobleaching experiments, which suggests that this fraction of RUNX1 and RUNX2 proteins are immobilized through the C-terminal domain by interacting with the nuclear architecture. Truncation of the C-terminus of RUNX2, which removes the NMTS as well as several co-regulatory protein interaction domains, increases the mobility of RUNX2 by at least an order of magnitude, resulting in a half-time of recovery equivalent to that of EGFP alone. Contributions of the NMTS sequence to the subnuclear distribution and mobility of RUNX2 were further assessed by creating point mutations in the NMTS of RUNX2 fused to EGFP. The results show that these point mutations decrease, but do not abolish, association with the nuclear matrix compared to wild-type EGFP-RUNX2. Three patterns of subnuclear distribution were similarly observed in living cells for both NMTS mutants and wild-type RUNX2. Furthermore, the NMTS mutations showed no measurable effect on the mobility of RUNX2. However, the mobility of RUNX proteins in each of the different subnuclear distributions observed in living cells were significantly different from each other. The punctate distribution appears to correlate with higher fluorescence intensity, suggesting that the protein concentration in the cell may have an effect on the formation or size of the foci. These findings suggest that the entire NMTS and/or the co-regulatory protein interaction domains may be necessary to immobilize RUNX2 proteins. Because RUNX factors contain a conserved intranuclear targeting signal, we examined whether RUNX1 and RUNX2 are targeted to common subnuclear domains. The results show that RUNX1 and RUNX2 colocalized in common subnuclear foci. Furthermore, RUNX subnuclear foci contain the co-regulatory protein CBFβ, which heterodimerizes with RUNX factors, and nascent transcripts as shown by BrUTP incorporation. These results suggest that RUNX subnuclear foci may represent sites of transcription containing multi-subunit transcription factor complexes. RUNX2 transcription factors induce expression of the osteocalcin promoter during osteoblast differentiation and to study both RUNX2 and osteocalcin function, it would be helpful to have transgenic mice in which OC expression could be easily evaluated. Therefore, to assess the in vivo regulation of osteocalcin by RUNX protein, we generated transgenic mice expressing EGFP controlled by the osteocalcin promoter. Our results show that EGFP is expressed from the OC promoter in a cultured osteosarcoma cell line, but not in a kidney cell line, and is induced by vitamin D3. Furthermore, the OC-EGFP transgenic mice specifically express EGFP in osteoblasts and osteocytes in bone tissues. Moreover, EGFP is expressed in mineralized bone nodules of differentiated bone marrow derived from transgenic mice. Thus, these mice produce a good model for studying the in vivo effects of RUNX-mediated osteocalcin regulation and for developing potential drug therapies for bone diseases. Taken together, our results in living cells support the conclusion that RUNX transcription factors dynamically associate with stationary subnuclear foci in a C-terminal dependent mechanism to regulate gene expression. Moreover, RUNX subnuclear foci represent transcription sites containing nascent transcripts and co-regulatory interacting proteins. These conclusions provide a mechanism for how RUNX transcription factors may associate with subnuclear foci to regulate gene expression. Furthermore, the OC-EGFP transgenic mice now provide a useful tool for studying the in vivo function and regulation of osteocalcin by RUNX proteins during osteoblast differentiation and possibly for developing therapeutic drugs for treatment of bone diseases in the future.
43

The essential role of Stat3 in bone homeostasis and mechanotransduction

Zhou, Hongkang January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Signal Transducer and Activator of Transcription 3 (Stat3) is a transcription factor expressed in bone and joint cells that include osteoblasts, osteocytes, osteoclasts, and chondrocytes. Stat3 is activated by a variety of cytokines and growth factors, including IL-6/gp130 family cytokines. These cytokines not only regulate the differentiation of osteoblasts and osteoclasts, but also regulate proliferation of chondrocytes through Stat3 activation. In 2007, mutations of Stat3 have been confirmed to cause a rare human immunodeficiency disease – Job syndrome which presents skeletal abnormalities like: reduced bone density (osteopenia), scoliosis, hyperextensibility of joints, and recurrent pathological bone fractures. Changes in the Stat3 gene alter the structure and function of the Stat3 proteins, impairing its ability to control the activity of other genes. However, little is known about the effects of Stat3 mutations on bone cells and tissues. To investigate the in vivo physiological role of Stat3 in bone homeostasis, osteoblast/osteocyte-specific Stat3 knockout (KO) mice were generated via the Cre-LoxP recombination system. The osteoblast/osteocyte-specific Stat3 KO mice showed bone abnormalities and an osteoporotic phenotype because of a reduced bone formation rate. Furthermore, inactivation of Stat3 decreased load-driven bone formation, and the disruption of Stat3 in osteoblasts suppressed load-driven mitochondrial activity, which led to an elevated level of reactive oxygen species (ROS) in cultured primary osteoblasts. Stat3 has been found to be responsive to mechanical stimulation, and might play an important role in mechanical signal transduction in osteocytes. To investigate the role Stat3 plays in mechanical signaling transduction, osteocyte-specific Stat3 knockout (KO) mice were created. Inactivation of Stat3 in osteocytes presented a significantly reduced load-driven bone formation. Decreased osteoblast activity indicated by reduced osteoid surface was also found in osteocyte-specific Stat3 KO mice. Moreover, sclerostin (SOST) protein which is a critical osteocyte-specific inhibitor of bone formation, its encoded gene SOST expression has been found to be enhanced in osteocyte-specific Stat3 KO mice. Thus, these results clearly demonstrated that Stat3 plays an important role in bone homeostasis and mechanotransduction, and Stat3 is not only involved in bone-formation-important genes regulation in the nucleus but also in mediation of ROS and oxidative stress in mitochondria.

Page generated in 0.026 seconds