• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 8
  • 3
  • 1
  • 1
  • Tagged with
  • 26
  • 26
  • 18
  • 9
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Methane combustion over supported palladium catalysts

Baldwin, T. R. January 1989 (has links)
No description available.
2

Utilização do metano como doador de elétrons para remoção de nitrogênio via nitrificação e desnitrificação em reator operado em bateladas seqüenciais / Nitrogen removal by biological nitrification and denitrification using methane as electron donor in a sequencing batch aerobic/anoxic reactor

Cuba, Renata Medici Frayne 19 September 2008 (has links)
A remoção de nitrogênio via processos biológicos de nitrificação e desnitrificação foi estudada utilizando-se um reator operado em bateladas seqüenciais submetido a períodos aeróbios e anóxicos. Metano foi adicionado como doador de elétrons na etapa desnitrificante nos períodos anóxicos. Foram testadas diferentes condições operacionais e nutricionais com o objetivo de se alcançar a melhor eficiência de remoção de nitrogênio. Quando o reator operou com elevadas concentrações de biomassa em suspensão (6 g/L), a oxidação completa do nitrogênio amoniacal foi alcançada sob períodos aeróbios de 6 e 3 horas e anóxicos de 16,5 e 4 horas adotados nas etapas 1 e 2, respectivamente. Porém, a desnitrificação foi principalmente associada com o uso de subprodutos metabólicos no lugar do metano. De forma a diminuir o consumo de material endógeno, a biomassa foi imobilizada em material suporte (espuma de poliuretano) e os períodos aeróbios e anóxicos foram diminuídos para 3 horas cada (etapa 3) e posteriormente, 0,5 h e 1,5 h (etapa 4). Nesta última etapa, as maiores eficiências de remoção de nitrogênio, (~35%) foram verificadas somente nos primeiros dias de operação. O processo de desnitrificação utilizando metano como doador de elétrons também foi estudado sob condições anóxicas tendo nitrato e, posteriormente, nitrito como fontes de nitrogênio oxidadas. Nesses experimentos, as eficiências de remoção de nitrogênio foram de 75% e 90%, porém foram obtidos baixos valores de constantes cinéticas aparentes de primeira ordem, \'K IND.NO3\' = 0,007/h e \'K IND.NO2\' = 0,0278/h, respectivamente, para ambos os aceptores de elétrons. Os resultados obtidos a partir de ensaios de número mais provável (NMP) para a quantificação dos organismos metanotróficos resultaram em 5,1 x \'10 POT.3\' (etapa 3, biomassa em suspensão) e 3,5 x \'10 POT.7\' NMP/g sólidos totais voláteis (etapa 4, biomassa aderida). Portanto, a presença de meio suporte para a adesão de biomassa aliado aos ciclos de aeração mais freqüentes favoreceram o crescimento dessas bactérias. Sulfato e cloreto, nas concentrações de, aproximadamente, 100 mg/L, afetaram a eficiência de remoção de nitrogênio quando associado ao processo metanotrófico. Os resultados das análises de biologia molecular revelaram a presença de organismos metanotróficos semelhantes a Methylomonas sp. tanto em amostras de biomassa retiradas do reator quando este operou sob condições desnitrificantes na presença de oxigênio, como também, naquelas retiradas quando o reator operou em condições anóxicas. / Nitrogen removal via biological nitrification and denitrification was studied in a sequencing batch reactor submitted to aerate and anoxic periods. Methane was added as electron donor for denitrification in the anoxic periods. Different operational and nutritional conditions referred to as stages in this text were tested aiming to achieve the best nitrogen removal efficiency. When the reactor operated with high suspended biomass concentration (6 g/L), complete ammonia nitrogen oxidation was obtained in 6 to 3 hours aerobic periods and 16.5 to 4 hours anoxic periods defined for stage 1 and stage 2, respectively. However, denitrification was mainly associated with the use of endogenous metabolic byproducts instead of methane. In order to diminish endogenous material uptake, the biomass was immobilized in support material (polyurethane foam) and aerobic and anaerobic periods were reduced to 3 hours each (stage 3), followed by another reduction to 0.5 and 1.5 hours, respectively (stage 4). The highest nitrogen removal efficiencies (~35 %) were identified in this last stage, but only during the initial days of operation. The denitrification process using methane as electron donor was also studied under anoxic conditions, separately from nitrification by adding nitrate and nitrite as the oxidized nitrogen sources. In these experiments, nitrogen removal efficiencies were of 75% and 90%, but very low first order kinetic constants \'K IND.NO3\' = 0,007/h e \'K IND.NO2\' = 0,0278/h, respectively, were obtained with both the electron acceptors. The most provable number (MPN) tests carried out for methanotrophic bacteria quantification resulted in 5,1 x \'10 POT.3\' MPN/gVSS (stage 3 - suspended biomass) and 3,5 x \'10 POT.7\' MPN/gVSS (stage 4 - attached biomass). Therefore, the presence of a support media for biomass adhesion as well as more frequent aeration cycles enhanced the growth of such bacteria. Sulfate and chloride at concentrations of 100 mg/L, approximately, affected the nitrogen removal efficiency associated to methanotrofic process. The presence of methanotrops identified by molecular biology tests as Methylomonas sp was observed in samples taken from reactor in presence of oxygen and under anoxic operational conditions.
3

Síntese e caracterização de Ni/LaFeO3 nanoestruturados para a oxidação parcial do metano. / Synthesis and characterization of nanostructured Ni/LaFeO3 for partial oxidation of methane.

Auta Narjara de Brito Soares 22 August 2018 (has links)
Perovskita de LaFeO3 sintetizadas pelo método de Pechini foram avaliadas como catalisadores para a reação de oxidação parcial do metano. Foi impregnado níquel por via úmida como fase ativa em concentrações de 15 e 30 %, sobre as perovskitas, 15NLF e 30NLF, respectivamente, e o seu efeito foi avaliado para a mesma reação. Foi realizado análises termogravimétricas (TGA/DTGA) nos precursores da perovskitas, constatando a sua formação a 650 °C. A análise de microscopia de varredura (MEV) foi realizada nas amostras da perovskita pura, sendo que em uma delas foi realizada um banho de ultrassom para diminuir o tamanho de suas partículas e avaliar este efeito na reação de POM. Análises de difração de raio X (DRX) mostraram que todas as amostras apresentam as mesmas propriedades cristalográficas, sendo que, nas amostras contendo níquel, o metal apresentou-se na forma de NiO. O tamanho dos cristais, cálculado através da equação de Scherer, foi na ordem de 20 nm. Este resultado apontou que o níquel impregnado não participa da estrutura perovskita, mas sim está sobreposto a esta. Através da microscopia eletrônica de transmissão (TEM) foi possível visualizar a dispersão da fase ativa na superfície óxida e tamanhos de partículas na ordem de 20 nm. A redução a temperatura programada (TPR) apresentou as temperaturas de redução de espécies níquel e de ferro, presente na perovskita, e permitiu compreender a atuação das espécies Ni+2 e Fe0 na formação de H2 e CO. Os testes catalíticos foram realizados a 700ºC e 750°C, a pressão atmosférica, para uma vazão de alimentação de 200 cm3.min-1. Os testes cataliticos mostraram que a conversão de H2 dobrou para perovskita Ni/LaFeO3 em relação a LaFeO3. O catalisador 15NLF apresentou melhor estabilidade que o catalisador 30NLF para a reação. / LaFeO3 perovskite synthesized by the Pechini method were evaluated for the partial oxidation reaction of methane. Nickel was impregnated as the active phase in concentrations of 15 and 30%, on perovskites, 15NLF and 30NLF, respectively, and its effect was evaluated for the same reaction. Thermogravimetric analyzes (TGA / DTGA) were carried out on the perovskite precursors, confirming their formation at 650 °C. Scanning microscopy (SEM) was performed on pure perovskite samples, in one of them an ultrasonic bath was performed to reduce the size of its particles and to evaluate this effect in the POM reaction. X-ray diffraction (XRD) analyzes showed that all samples had the same crystallographic properties, and in the samples containing nickel, the metal was present as NiO. The size of the crystals, calculated through the Scherer equation, was in the order of 20 nm. This result pointed out that the impregnated nickel does not participate in the perovskite structure. Through transmission electron microscopy (TEM) it was possible to visualize the dispersion of the active phase on the oxide surface and particle sizes in the order of 20 nm. The programmed temperature reduction (TPR) showed the iron and nickel species reduction temperatures present in the perovskite, and allowed to understand the Ni+ 2 and Fe0 species in the H2 and CO formation. The catalytic tests were performed at 700 °C and 750 °C at atmospheric pressure for a flow rate of 200 cm3.min-1. The catalytic tests showed that the conversion of H2 doubled to perovskite Ni/LaFeO3 in relation to LaFeO3. 15NLF catalyst presented better stability than the 30NLF catalyst for the reaction.
4

Síntese e caracterização de Ni/LaFeO3 nanoestruturados para a oxidação parcial do metano. / Synthesis and characterization of nanostructured Ni/LaFeO3 for partial oxidation of methane.

Soares, Auta Narjara de Brito 22 August 2018 (has links)
Perovskita de LaFeO3 sintetizadas pelo método de Pechini foram avaliadas como catalisadores para a reação de oxidação parcial do metano. Foi impregnado níquel por via úmida como fase ativa em concentrações de 15 e 30 %, sobre as perovskitas, 15NLF e 30NLF, respectivamente, e o seu efeito foi avaliado para a mesma reação. Foi realizado análises termogravimétricas (TGA/DTGA) nos precursores da perovskitas, constatando a sua formação a 650 °C. A análise de microscopia de varredura (MEV) foi realizada nas amostras da perovskita pura, sendo que em uma delas foi realizada um banho de ultrassom para diminuir o tamanho de suas partículas e avaliar este efeito na reação de POM. Análises de difração de raio X (DRX) mostraram que todas as amostras apresentam as mesmas propriedades cristalográficas, sendo que, nas amostras contendo níquel, o metal apresentou-se na forma de NiO. O tamanho dos cristais, cálculado através da equação de Scherer, foi na ordem de 20 nm. Este resultado apontou que o níquel impregnado não participa da estrutura perovskita, mas sim está sobreposto a esta. Através da microscopia eletrônica de transmissão (TEM) foi possível visualizar a dispersão da fase ativa na superfície óxida e tamanhos de partículas na ordem de 20 nm. A redução a temperatura programada (TPR) apresentou as temperaturas de redução de espécies níquel e de ferro, presente na perovskita, e permitiu compreender a atuação das espécies Ni+2 e Fe0 na formação de H2 e CO. Os testes catalíticos foram realizados a 700ºC e 750°C, a pressão atmosférica, para uma vazão de alimentação de 200 cm3.min-1. Os testes cataliticos mostraram que a conversão de H2 dobrou para perovskita Ni/LaFeO3 em relação a LaFeO3. O catalisador 15NLF apresentou melhor estabilidade que o catalisador 30NLF para a reação. / LaFeO3 perovskite synthesized by the Pechini method were evaluated for the partial oxidation reaction of methane. Nickel was impregnated as the active phase in concentrations of 15 and 30%, on perovskites, 15NLF and 30NLF, respectively, and its effect was evaluated for the same reaction. Thermogravimetric analyzes (TGA / DTGA) were carried out on the perovskite precursors, confirming their formation at 650 °C. Scanning microscopy (SEM) was performed on pure perovskite samples, in one of them an ultrasonic bath was performed to reduce the size of its particles and to evaluate this effect in the POM reaction. X-ray diffraction (XRD) analyzes showed that all samples had the same crystallographic properties, and in the samples containing nickel, the metal was present as NiO. The size of the crystals, calculated through the Scherer equation, was in the order of 20 nm. This result pointed out that the impregnated nickel does not participate in the perovskite structure. Through transmission electron microscopy (TEM) it was possible to visualize the dispersion of the active phase on the oxide surface and particle sizes in the order of 20 nm. The programmed temperature reduction (TPR) showed the iron and nickel species reduction temperatures present in the perovskite, and allowed to understand the Ni+ 2 and Fe0 species in the H2 and CO formation. The catalytic tests were performed at 700 °C and 750 °C at atmospheric pressure for a flow rate of 200 cm3.min-1. The catalytic tests showed that the conversion of H2 doubled to perovskite Ni/LaFeO3 in relation to LaFeO3. 15NLF catalyst presented better stability than the 30NLF catalyst for the reaction.
5

Utilizing the by-product oxygen of the hybrid sulfur process for synthesis gas production / by F.H. Conradie

Conradie, Frederik Hendrik January 2009 (has links)
This study introduces an evaluation of the downstream utilization of oxygen produced by the hybrid sulfur process (HYS). Both technical and economic aspects were considered in the production of primarily synthesis gas and hydrogen. Both products could increase the economic potential of the hybrid sulfur process. Based on an assumed 500MWt pebble bed modular nuclear reactor, the volume of hydrogen and oxygen produced by the scaled down HYS was found to be 121 and 959 ton per day respectively. The partial oxidation plant (POX) could produce approximately 1840 ton synthesis gas per day based on the oxygen obtained from the HYS. The capital cost of the POX plant is in the order of $104 million (US dollars, Base year 2008). Compared to the capital cost of the HYS, this seems to be a relatively small additional investment. The production cost varied from a best case scenario $9.21 to a worst case scenario of $19.36 per GJ synthesis gas. The profitability analysis conducted showed favourable results, indicating that under the assumed conditions, and with 20 years of operation, a NPV of $87 mil. and an IRR of 19.5% could be obtained, for the assumed base case. The economic sensitivity analysis conducted, provided insight into the upper and lower limitations of favourable operation. The second product that could be produced was hydrogen. With the addition of a water gas shift and a pressure swing adsorption process to the POX, it was found that an additional 221 ton of hydrogen per day could be produced. The hydrogen could be produced in the best case at $2.34/kg and in the worst case at $3.76/kg. The investment required would be in the order of $50 million. The profitability analysis for the base case analysis predicts an NPV of $206 million and a high IRR of 23.0% under the assumed conditions. On financial grounds it therefore seemed that the hydrogen production process was favourable. The thermal efficiency of the synthesis gas production section was calculated and was in good agreement with that obtained from literature. The hydrogen production section’s thermal efficiency was compared to that of steam methane reforming of natural gas (SMR) and it was found that the efficiencies were comparable but the SMR process was superior. The hydrogen production capacity of the HYS process was increased by a factor of 1.83. This implied that for every 1 kg of hydrogen produced by the HYS an additional 1.83 kg was produced by the proposed process addition. This lowers the cost of hydrogen produced by the HYS from $6.83 to the range of approximately $3.93 - $4.85/kg. In the event of a global hydrogen economy, traditional production methods could very well be supplemented with new and innovative methods. The integration of the wellknown methods incorporated with the new nuclear based methods of hydrogen production and chemical synthesis could facilitate the smooth transition from fossil fuel based to environmentally friendly methods. This study presents one possible integration method of nuclear based hydrogen production and conventional processing methods. This process is technically possible, efficient and economically feasible. / Thesis (M.Ing. (Nuclear Engineering))--North-West University, Potchefstroom Campus, 2009.
6

Utilizing the by-product oxygen of the hybrid sulfur process for synthesis gas production / by F.H. Conradie

Conradie, Frederik Hendrik January 2009 (has links)
This study introduces an evaluation of the downstream utilization of oxygen produced by the hybrid sulfur process (HYS). Both technical and economic aspects were considered in the production of primarily synthesis gas and hydrogen. Both products could increase the economic potential of the hybrid sulfur process. Based on an assumed 500MWt pebble bed modular nuclear reactor, the volume of hydrogen and oxygen produced by the scaled down HYS was found to be 121 and 959 ton per day respectively. The partial oxidation plant (POX) could produce approximately 1840 ton synthesis gas per day based on the oxygen obtained from the HYS. The capital cost of the POX plant is in the order of $104 million (US dollars, Base year 2008). Compared to the capital cost of the HYS, this seems to be a relatively small additional investment. The production cost varied from a best case scenario $9.21 to a worst case scenario of $19.36 per GJ synthesis gas. The profitability analysis conducted showed favourable results, indicating that under the assumed conditions, and with 20 years of operation, a NPV of $87 mil. and an IRR of 19.5% could be obtained, for the assumed base case. The economic sensitivity analysis conducted, provided insight into the upper and lower limitations of favourable operation. The second product that could be produced was hydrogen. With the addition of a water gas shift and a pressure swing adsorption process to the POX, it was found that an additional 221 ton of hydrogen per day could be produced. The hydrogen could be produced in the best case at $2.34/kg and in the worst case at $3.76/kg. The investment required would be in the order of $50 million. The profitability analysis for the base case analysis predicts an NPV of $206 million and a high IRR of 23.0% under the assumed conditions. On financial grounds it therefore seemed that the hydrogen production process was favourable. The thermal efficiency of the synthesis gas production section was calculated and was in good agreement with that obtained from literature. The hydrogen production section’s thermal efficiency was compared to that of steam methane reforming of natural gas (SMR) and it was found that the efficiencies were comparable but the SMR process was superior. The hydrogen production capacity of the HYS process was increased by a factor of 1.83. This implied that for every 1 kg of hydrogen produced by the HYS an additional 1.83 kg was produced by the proposed process addition. This lowers the cost of hydrogen produced by the HYS from $6.83 to the range of approximately $3.93 - $4.85/kg. In the event of a global hydrogen economy, traditional production methods could very well be supplemented with new and innovative methods. The integration of the wellknown methods incorporated with the new nuclear based methods of hydrogen production and chemical synthesis could facilitate the smooth transition from fossil fuel based to environmentally friendly methods. This study presents one possible integration method of nuclear based hydrogen production and conventional processing methods. This process is technically possible, efficient and economically feasible. / Thesis (M.Ing. (Nuclear Engineering))--North-West University, Potchefstroom Campus, 2009.
7

Synthese und Charakterisierung SiC-basierter Katalysatorsysteme und deren Anwendung in der Oxidation von Methan

Frind, Robert 06 July 2011 (has links) (PDF)
Die Nutzung fossiler Energieträger hat die wirtschaftliche und gesellschaftliche Entwicklung der Menschheit bedeutend geprägt. Die Relevanz der verschiedenen Brennstoffe ist dabei stark vom technologischen Niveau abhängig gewesen. Mit der fortschreitenden Entwicklung und dem Aufstreben der Automobilindustrie in der ersten Hälfte des 20. Jahrhunderts gewann Erdöl als Quelle für verschiedene Kraftstoffe und Grundchemikalien immer größere Bedeutung. Der Energieverbrauch der Industriestaaten ist seit dem stetig gestiegen und zum Ende des 20. Jahrhunderts treten immer mehr Schwellenländer wie China, Indien oder Brasilien mit großem Energiehunger in Erscheinung. Dadurch wurden die Vorkommen fossiler Brennstoffe mit immer höherem Tempo ausgebeutet, sodass Schätzungen davon ausgehen, dass bereits 2030 nur noch 75% des Bedarfs durch bereits erschlossene Lagerstätten gedeckt werden können.[1] Im Gegensatz dazu sind die Reserven an Erdgas noch deutlich größer. Erdgas besteht vor allem aus Methan, welches auch über alternative Methoden z.B. Biofermentation hergestellt werden kann. Neben der Nutzung als primärer Energieträger ist Methan Ausgangsstoff für die Herstellung einer Vielzahl chemischer Produkte, z.B. Methanol oder kurzkettige Olefine[2, 3]. Eine wichtige Zwischenstufe dieser Prozesse stellt die Herstellung von Synthesegas dar, einem Gemisch aus Wasserstoff und Kohlenmonoxid. Die Herstellung erfolgt industriell über die Reaktion von Methan und Wasserdampf, dem Steamreforming. Alternative Verfahren stellen die partielle Oxidation von Methan und das Dry Reforming dar. In dieser Arbeit wurde die Aktivität verschiedener Katalysatorsysteme in der Totaloxidation, der partiellen Oxidation und dem Dry Reforming von Methan untersucht. Zur Synthese der Katalysatoren wurde die von E.Kockrick[4, 5] entwickelte Mikroemulsionsmethode angewandt. Dabei wurde die Abhängigkeit der katalytischen Aktivität von der Zusammensetzung der Komposite und den Synthesebedingungen untersucht. Das modulare Syntheseprinzip der Mikroemulsionsmethode wurde durch die Substitution der katalytisch aktiven Spezies durch verschiedene Übergangsmetalle und Gemische demonstiert. Weiterhin wurde eine neue Methode zur Herstellung makroporöser SiC-Keramiken (Abbildung 1) entwickelt. Dabei wird ein flüssiges Polycarbosilan in einer Emulsion mit besonders hohem Anteil der inneren Phase (high internal phase emulsion = HIPE) polymerisiert und zum SiC umgesetzt. Diese SiC-PolyHIPEs zeichnen sich durch ihre hohe Porosität und geringe Dichte aus. Ausgehend von der Synthesevorschrift nach Schwab et al.,[6] die die Synthese styrolbasierter PolyHIPEs beschreibt, wurde Styrol schrittweise durch SMP-10 ersetzt. Die erfolgreiche Inkorporation wurde durch thermogravimetrische Untersuchungen nachgewiesen. Zur Vernetzung des HIPE wurden verschiedene Initiatoren verwendet. Über den Anteil des SMP-10 am PolyHIPE konnte direkt Einfluss auf den Porenradius und die Dichte genommen werden, wobei die Porosität konstant bei 75% gehalten werden konnte.[7] Das Potential der SiC-PolyHIPEs für den Einsatz als poröser Katalysatorträger konnte durch die Funktionalisierung mit CeO2 und den Einsatz in der temperaturprogrammierten Oxidation von Methan nachgewiesen werden. Bereits durch eine Beladung des SiC-PolyHIPEs mit 30 Gew.% CeO2 konnte die gleiche Umsetzungstemperatur des Methans erreicht werden wie bei reinem CeO2. Eine weitere Strategie zur Erzeugung katalytisch aktiver SiC-Materialien wurde über die Funktionalisierung des Polycarbosilans mit hydrophoben CeO2-Nanopartikeln und Cerkomplexen entwickelt. Dabei zeigte sich, dass durch das Einbringen von 5 Gew.% über Dodecylamin stabilisierter CeO2-Nanopartikel eine ähnliche Aktivität in der Methanoxidation erreicht wurde, wie mit reinem Cerdioxid. Die Funktionalisierung des SMP-10 mit Cerkomplexen ergab für alle Cerkomplexe eine Phasenseparation nach dem Entfernen des Lösungsmittels. Nach der getrennten Pyrolyse der Phasen konnte nur im Pyrolysat der festen Phase Cer nachgewiesen werden, wodurch die Methanoxidation katalysiert wird. Als weitere Methode zur Erzeugung katalytisch aktiver und poröser SiC-Komposite wurde die von E.Kockrick entwickelte inverse Mikroemulsionsmethode[4, 5] verwendet. Die gewonnenen CeO2/Pt-SiCKomposite zeigten spezifische Oberflächen von bis zu 482m²/g bei einer Pyrolysetemperatur von 840 °C. Bei höheren Pyrolysetemperaturen von 1200 bzw. 1500 °C wurden Komposite mit maximal 428 bzw. 87m²/g erhalten. Die katalytischen Untersuchungen der CeO2/Pt-SiC-Komposite erfolgten an einem selbst entwickelten Katalyseteststand mit online-Analytik.[8] Dabei wurden die Totaloxidation, die partielle Oxidation und das Dry Reforming von Methan untersucht. Die Umsetzungstemperatur in der Totaloxidation von Methan konnte um bis zu 443K abgesenkt werden. In der partiellen Oxidation von Methan, wie auch beim Dry Reforming konnte bereits ab einer Reaktortemperatur von 805 °C Umsätze gemäß dem thermodynamischen Gleichgewicht erreicht werden. Die Aktivität in der partiellen Oxidation ist vor allem abhängig vom Platingehalt im Komposit. Die höchste Aktivität war bei den Kompositen mit niedriger Pyrolysetemperatur zu verzeichnen. Nach der Pyrolyse bei 1500 °C hingegen wurden aufgrund der geringeren spezifischen Oberfläche und der damit einhergehenden verminderten Zugänglichkeit der aktiven Zentren geringere Umsätze beobachtet. Einen guten Kompromiss zwischen Oxidationsbeständigkeit und katalytischer Aktivität stellten hier die Komposite dar, die bei 1200 °C pyrolysiert wurden. Mit diesen Kompositen wurden ab 805 °C bis zu 90% Umsatz und 80% Selektivität zu CO in der partiellen Oxidation von Methan und im Dry Reforming erreicht. Beim wiederholten Einsatz der CeO2/Pt-SiC-Komposite in der temperaturprogrammierten Oxidation von Methan konnte nach über 7 Zyklen keine Deaktivierung des Katalysators beobachtet werden. Die Übertragbarkeit der Mikroemulsionsmethode konnte durch den Einsatz verschiedener anderer Katalysatormaterialien gezeigt werden. Die katalytische Aktivität der erhaltenen porösen MI/MII-SiCKomposite wurde in der temperaturprogrammierten Oxidation von Methan mit einer Absenkung der Onsettemperatur um 177K bis 267K bestimmt. Damit stellt die Mikroemulsionsmethode eine flexible und robuste Möglichkeit zur Herstellung poröser SiC-Komposit-Katalysatoren dar. Literatur [1] International Energy Agency; World Energy Outlook, 2010. [2] M. Stöcker, Microporous Mesoporous Mater., 1999, 29(1-2), 3–48. [3] A.P.E. York, T. Xiao, M.L.H. Green, and J.B. Claridge, Catal. Rev. - Sci. Eng., 2007, 49(4), 511 – 560. [4] E. Kockrick, P. Krawiec, U. Petasch, H.-P. Martin, M. Herrmann, and S. Kaskel, Chem. Mater., 2008, 20(1), 77–83. [5] E. Kockrick, R. Frind, M. Rose, U. Petasch, W. Böhlmann, D. Geiger, M. Herrmann, and S. Kaskel, J. Mater. Chem., 2009, 19(11), 1543–1553. [6] M.G. Schwab, I. Senkovska, M. Rose, N. Klein, M. Koch, J. Pahnke, G. Jonschker, B. Schmitz, M. Hirscher, and S. Kaskel, Soft Matter, 2009, 5(5), 1055. [7] R. Frind, M. Oschatz, and S. Kaskel, J. Mater. Chem., 2011, (in Revision). [8] R. Frind, L. Borchardt, E. Kockrick, L. Mammitzsch, U. Petasch, M. Herrmann, and S. Kaskel, Appl. Catal., A, 2011, (in Revision).
8

Utilização do metano como doador de elétrons para remoção de nitrogênio via nitrificação e desnitrificação em reator operado em bateladas seqüenciais / Nitrogen removal by biological nitrification and denitrification using methane as electron donor in a sequencing batch aerobic/anoxic reactor

Renata Medici Frayne Cuba 19 September 2008 (has links)
A remoção de nitrogênio via processos biológicos de nitrificação e desnitrificação foi estudada utilizando-se um reator operado em bateladas seqüenciais submetido a períodos aeróbios e anóxicos. Metano foi adicionado como doador de elétrons na etapa desnitrificante nos períodos anóxicos. Foram testadas diferentes condições operacionais e nutricionais com o objetivo de se alcançar a melhor eficiência de remoção de nitrogênio. Quando o reator operou com elevadas concentrações de biomassa em suspensão (6 g/L), a oxidação completa do nitrogênio amoniacal foi alcançada sob períodos aeróbios de 6 e 3 horas e anóxicos de 16,5 e 4 horas adotados nas etapas 1 e 2, respectivamente. Porém, a desnitrificação foi principalmente associada com o uso de subprodutos metabólicos no lugar do metano. De forma a diminuir o consumo de material endógeno, a biomassa foi imobilizada em material suporte (espuma de poliuretano) e os períodos aeróbios e anóxicos foram diminuídos para 3 horas cada (etapa 3) e posteriormente, 0,5 h e 1,5 h (etapa 4). Nesta última etapa, as maiores eficiências de remoção de nitrogênio, (~35%) foram verificadas somente nos primeiros dias de operação. O processo de desnitrificação utilizando metano como doador de elétrons também foi estudado sob condições anóxicas tendo nitrato e, posteriormente, nitrito como fontes de nitrogênio oxidadas. Nesses experimentos, as eficiências de remoção de nitrogênio foram de 75% e 90%, porém foram obtidos baixos valores de constantes cinéticas aparentes de primeira ordem, \'K IND.NO3\' = 0,007/h e \'K IND.NO2\' = 0,0278/h, respectivamente, para ambos os aceptores de elétrons. Os resultados obtidos a partir de ensaios de número mais provável (NMP) para a quantificação dos organismos metanotróficos resultaram em 5,1 x \'10 POT.3\' (etapa 3, biomassa em suspensão) e 3,5 x \'10 POT.7\' NMP/g sólidos totais voláteis (etapa 4, biomassa aderida). Portanto, a presença de meio suporte para a adesão de biomassa aliado aos ciclos de aeração mais freqüentes favoreceram o crescimento dessas bactérias. Sulfato e cloreto, nas concentrações de, aproximadamente, 100 mg/L, afetaram a eficiência de remoção de nitrogênio quando associado ao processo metanotrófico. Os resultados das análises de biologia molecular revelaram a presença de organismos metanotróficos semelhantes a Methylomonas sp. tanto em amostras de biomassa retiradas do reator quando este operou sob condições desnitrificantes na presença de oxigênio, como também, naquelas retiradas quando o reator operou em condições anóxicas. / Nitrogen removal via biological nitrification and denitrification was studied in a sequencing batch reactor submitted to aerate and anoxic periods. Methane was added as electron donor for denitrification in the anoxic periods. Different operational and nutritional conditions referred to as stages in this text were tested aiming to achieve the best nitrogen removal efficiency. When the reactor operated with high suspended biomass concentration (6 g/L), complete ammonia nitrogen oxidation was obtained in 6 to 3 hours aerobic periods and 16.5 to 4 hours anoxic periods defined for stage 1 and stage 2, respectively. However, denitrification was mainly associated with the use of endogenous metabolic byproducts instead of methane. In order to diminish endogenous material uptake, the biomass was immobilized in support material (polyurethane foam) and aerobic and anaerobic periods were reduced to 3 hours each (stage 3), followed by another reduction to 0.5 and 1.5 hours, respectively (stage 4). The highest nitrogen removal efficiencies (~35 %) were identified in this last stage, but only during the initial days of operation. The denitrification process using methane as electron donor was also studied under anoxic conditions, separately from nitrification by adding nitrate and nitrite as the oxidized nitrogen sources. In these experiments, nitrogen removal efficiencies were of 75% and 90%, but very low first order kinetic constants \'K IND.NO3\' = 0,007/h e \'K IND.NO2\' = 0,0278/h, respectively, were obtained with both the electron acceptors. The most provable number (MPN) tests carried out for methanotrophic bacteria quantification resulted in 5,1 x \'10 POT.3\' MPN/gVSS (stage 3 - suspended biomass) and 3,5 x \'10 POT.7\' MPN/gVSS (stage 4 - attached biomass). Therefore, the presence of a support media for biomass adhesion as well as more frequent aeration cycles enhanced the growth of such bacteria. Sulfate and chloride at concentrations of 100 mg/L, approximately, affected the nitrogen removal efficiency associated to methanotrofic process. The presence of methanotrops identified by molecular biology tests as Methylomonas sp was observed in samples taken from reactor in presence of oxygen and under anoxic operational conditions.
9

Anaerobic oxidation of methane in paddy soil

Fan, Lichao 30 September 2020 (has links)
No description available.
10

Origin of methane at ancient methane seeps inferred from organic geochemical signatures in seep carbonates / 冷湧水炭酸塩岩の有機地球化学分析による古冷湧水メタンの起源推定

Miyajima, Yusuke 26 March 2018 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第20926号 / 理博第4378号 / 新制||理||1629(附属図書館) / 京都大学大学院理学研究科地球惑星科学専攻 / (主査)教授 生形 貴男, 教授 酒井 治孝, 教授 田上 高広 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM

Page generated in 0.09 seconds