• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 405
  • 261
  • 126
  • 61
  • 29
  • 26
  • 19
  • 16
  • 12
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • Tagged with
  • 1210
  • 234
  • 182
  • 182
  • 143
  • 125
  • 106
  • 98
  • 93
  • 91
  • 90
  • 73
  • 73
  • 71
  • 71
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
821

Removal of hydrogen sulfide from an air stream using UV light / Avlägsnande av vätesulfid från en luftström med användning av UV-ljus

Gilardi, Lorenza January 2016 (has links)
Volatile sulfur compounds are cause of concern because, when present in high concentrations, they constitute a danger for health because of their strong toxicity. Furthermore, for low concentrations, they are often a cause of complaint, because of their low odor threshold. In this context, the purpose of this Thesis is to evaluate a new technology for the abatement of sulfur-based malodorous compounds. The investigated technology consists in the use of ozone generating low-pressure UV mercury lamps, operating at room temperature. Hydrogen sulfide is often found in industrial processes, (e.g. WWTPs (Wastewater Treatment Plants), leather production, sewage treatment, garbage disposal, etc). Moreover, it presents both a very high toxicity a low odor threshold. Thus, due to its high representativeness of the case, hydrogen sulfide was chosen as reference compound for the purposes of this project. In order to evaluate a wide range of cases, several experiments using different residence times, humidity contents and inlet concentrations of the pollutant were conducted. The obtained results show that this technology generally presents discrete conversion efficiencies, although not suffcient to be used as freestanding process. For this reason, a pretreatment is revealed to be necessary. The best conversion efficiency was obtained for low flow rates and high moisture content. At the end of the project, as side-study, a possible pretreatment using an adsorbent bed constituted by granular ferric oxide was evaluated.
822

Formation of Bromate and Other Brominated Disinfection Byproducts during the Treatment of Waters Using a Hybrid Ozonation-Membrane Filtration System

Moslemi, Mohammadreza 10 1900 (has links)
<p>In this research, ozone hydrodynamics and disinfection by-products formation in a novel hybrid ozonation-ceramic membrane filtration system was studied to minimize membrane fouling while also ensuring that the system meets regulatory criteria for disinfection by-products. The influence of important operating parameters including inlet ozone mass injection rate, initial bromide concentration, membrane molecular weight cut off (MWCO), membrane coating, hydroxyl radical scavenger (<em>t</em>-butanol), pH, and temperature on bromate concentration in the absence and presence of natural organic matter (NOM) was examined. Experiments were also conducted under various operating conditions to investigate the formation of total trihalomethanes (TTHMs) and halo-acetic acids (HAAs) in the water distribution system due to post chlorination. Moreover, variations in the TOC, UV<sub>254</sub>, color and turbidity with respect to operating parameters were monitored.</p> <p>Bromate and TTHMs formation increased with increasing ozone mass injection rate, and initial bromide concentration. An increase in the bromate concentration was observed with decreasing membrane MWCO. Less bromate and TTHM was formed with the coated membrane and <em>t</em>-butanol significantly reduced bromate and TTHM formation. Bromate formation decreased significantly with decreasing pH. Increasing the temperature resulted in enhanced bromate formation. NOM exerted a favorable effect on bromate formation as the bromate concentration was observed to decrease as the NOM content was increased.</p> <p>Experimental results indicated that ozonation can greatly reduce color and turbidity of water and can be used to overcome membrane fouling. Ensuring a minimum ozone residual in the system enables the continuous treatment of water at a relatively high permeate flux (up to 85% of the clean water flux) and eliminates the need for membrane cleaning procedures.</p> <p>An empirical model was developed to predict bromate formation in the hybrid ozone- membrane system (R<sup>2</sup>=0.903). Theoretical models were developed to estimate the rate of bromate formation and to describe the ozone mass transfer in a hybrid system. In all cases, good correlation between the model predictions and the experimental data was achieved.</p> / Doctor of Philosophy (PhD)
823

Evaluation of the Relationship between Ambient Air Pollution and Hospitalization for Acute Exacerbation of Chronic Obstructive Pulmonary Disease at Temple University Hospital

Krug-Gourley, Susan Lorraine January 2012 (has links)
Background: Air pollution has been associated with adverse health effects for all-cause and specific respiratory morbidity and mortality outcomes. Acute exacerbations of COPD (AE-COPD) accelerate the decline in pulmonary function and are associated with greater mortality, morbidity, health care utilization, and reduced quality of life. Since the 1970 Clean Air Act was implemented, important reductions in air pollution have been achieved, but no safe threshold has been identified. Objectives: The study was planned to evaluate associations between exposure to ambient concentrations of five criteria air pollutants (CO, SO2/, NO2/, ozone, PM2.5/) in Philadelphia, Pennsylvania, and visits to Temple University Hospital for AE-COPD, from January 1, 2005 through March 31, 2007. To identify subgroups with greater susceptibility to air pollution, associations were examined according to age, gender, race, residence, and antibiotic prescription. Methods: Average daily air pollutant concentrations were obtained from the EPA's Air Quality Services Data Mart. Air pollutant exposures were evaluated for the day of the visit (lag0), one and two days preceding the visit (lag1 and lag2), and the average concentration over three days (lag012). Poisson regression provided rate ratios (RRs) to estimate associations between air pollution exposures and AE-COPD hospital visits. Results: Of 1546 hospital visits for AE-COPD, 43% were from persons 65 years or older, 50% of each gender, and 90% from Philadelphia. In single pollutant models, increased RRs were present at all lags for NO2/ (e.g., RR = 2.27 [95%CI: 1.52, 3.38] at lag012) and SO2/ (e.g., RR = 1.70 [95%CI: 1.38, 2.08] at lag012). For PM2.5/, the direct effect was present only during the winter at lag1, lag2, and lag012 (RR = 1.79 [95%CI: 1.08, 2.96]). Inverse associations were present for ozone at all lags (e.g., RR = 0.64 [95%CI: 0.53, 0.76] at lag012). Compared to the cohort as a whole, those ≥ 65 years of age were at greater risk of an AE-COPD hospital visit associated with PM2.5/ and CO at lag012, with NO2/ and SO2/ at lag0 and lag012, but there was no difference in ozone effect. Conclusions: Primary gaseous air pollution exposures (SO2/, CO, NO2/) were associated with increased AE-COPD hospital visits among COPD patients at Temple University Hospital. The effects of SO2/, CO, NO2/, and PM2.5 were greater for the subgroup ≥ 65 years of age compared to the cohort as a whole. Inverse associations with ozone were consistent across subgroups. These results suggest that air quality during the study period was insufficient to protect the health of COPD patients, especially those ≥ 65 years old. Further study is needed to understand generalizability to other populations and to evaluate lower ranges of exposure from current levels of air pollution. / Public Health
824

Application of Ozone in Dissolved Air Flotation (DAF) for Enhanced Removal of TOC and Suspended Solids in Pulp and Paper Wastewaters

Brown, Amy Patricia January 2016 (has links)
Pulp and paper mills are one of the top consumers of water related to industrial manufacturing, which ultimately leads to a large volume of heavily contaminated wastewater. This discharged effluent can have a harmful effect on the receiving aquatic environment and cause further ramifications downstream. Thus, a technically feasible and cost effective treatment solution for safe release from the mill is essential. Dissolved air flotation (DAF) has many applications and involves the formation of air microbubbles triggered by a drop to atmospheric pressure. When introduced into the wastewater, these microbubbles attach to the floc particles present and float to the surface. Another water treatment technology is ozone, a powerful oxidant, and has been widely used in water and wastewater treatment over recent decades, including color reduction in pulp and paper mill wastewater treatment. This thesis studied the effect pre-ozonation has on the DAF process in treating pulp and paper mill secondary effluent. Wastewaters from three mills with different initial water quality parameters were used, especially chemical oxygen demand (COD), turbidity, and color. The most suitable coagulant and coagulant aid, aluminum chlorohydrate and cationic polymer NS 4700P respectively, were selected, and an effective bench-scale experimental procedure was established. Pre-ozonation did not reduce the need for coagulant due to little change in the overall COD, color, or turbidity removal. However, ozonation did reduce color before coagulation, and the ultimate target removal of COD to 90 ppm was met with the conditions chosen. / Environmental Engineering
825

COMBINED OZONE AND ULTRASOUND PROCESS FOR THE DESTRUCTION OF 1,4-DIOXANE IN CONTINUOUS FLOW REACTOR

Dietrich, Michael Thomas January 2016 (has links)
Clean water is essential to life. Growth in world population, changing diets, and a warming climate are driving an increase in the demand for water. Better management of water resources will help prevent scarcity, but in order to fully meet the future demand for safe, clean drinking water, new water treatment technologies are needed. This dissertation investigates a technology which is not well understood; the combination of ozone and ultrasound as potentially an efficient technology. Since nearly all previously published studies of combined ozone/ultrasound utilized batch reactors, a continuous flow reactor was constructed for this research. 1,4-Dioxane, henceforth referred to as dioxane, was chosen to evaluate the effectiveness of the combined ozone/ultrasound process. Dioxane is commonly detected in surface and groundwater and is a suspected human carcinogen. A recalcitrant contaminant, it resists direct oxidation by chlorine, oxygen, ozone, and biological treatment. It is miscible in water and doesn't sorb readily to organic matter, so it spreads rapidly in groundwater contamination plumes. It also resists air stripping and filtration, including reverse osmosis. For these reasons, dioxane makes an excellent candidate to measure the effectiveness of advanced oxidation processes, such as combined ozone/ultrasound. The treatment of dioxane by advanced oxidation processes has been studied extensively in the past. However, only one study has been published using combined ozone/ultrasound, and it was done in a batch reactor operating at a high ultrasonic frequency. The reactor built for this study also permitted reactor pressurization effects to be studied in a manner that has not been reported before for the combined ozone/ultrasound process. In this study, the combination of ozone and ultrasound was found to cause synergistic removal of dioxane from drinking water; the removal achieved by the combination significantly exceeded the sum of the removal achieved by ozone and ultrasound separately. In fact, the combination of ozone and ultrasound was found to remove more than double the dioxane that would be removed by doing both treatment processes separately. Ultrasound (20 kHz) was ineffective in removing dioxane alone, achieving less than 20% removal. At 16 mg/L, ozone alone was found to achieve removal of up to 86% after a 16 minute treatment time, but appears sensitive to matrix effects, especially pH. When ultrasound was combined with just 1.2 mg/L of aqueous ozone, over 90% removal occurred after a 16 minute treatment. Removal of dioxane was found to be driven not by ozone itself, but by radicals, suggesting that the decomposition of ozone is responsible for the generation of radical species and subsequent removal of dioxane. Ultrasound was found to increase the decomposition of ozone and appeared to be driving increased mass transfer of ozone into the aqueous phase. Modest reactor pressure appears to aid dioxane removal, but further increases in pressure did not appear to further enhance removal. An empirical model was constructed using a form similar to the Chick & Watson model for disinfection. Given inputs of initial aqueous ozone concentration, initial dioxane concentration, treatment time, and ultrasonic power, the model is able to predict effluent concentrations of dioxane with a relative root mean squared error of less than 5%. Additionally, RCT and mass balance analyses were performed, and both analysis techniques suggested that the removal of dioxane is dependent on the consumption of aqueous ozone. Spiked drinking water is representative of water that has undergone conventional treatment but requires a polishing step, and the combined ozone/ultrasound has shown promise as a polishing technology. Owing to its recalcitrance, prevalence, and mobility, dioxane represents a real and challenging groundwater contaminant, and combined ozone/ultrasound has shown promise as a groundwater treatment option. Additionally, the process is capable of dioxane removal in a pH range of 4-10. This pH independence, coupled with its ability to degrade recalcitrant contaminants, suggests that combined ozone/ultrasound holds promise as an industrial wastewater treatment option, too. The removal achieved by both ozone and combined ozone/ultrasound was an order of magnitude greater than what has been reported in previously published reports. However, a comparison of cost effectiveness relative to other advanced oxidation processes remains an area for future study. Finally, the combined ozone/ultrasound process holds promise as a drinking water treatment option in remote areas, since it requires only electricity. As a promising technology for polishing water for reuse, treating contaminated groundwater, treating industrial wastewater, and potentially improving access to safe drinking water in remote areas, combined ozone/ultrasound could aid in meeting global water demand in the future. / Civil Engineering
826

Effect of Ozone on CO2 Assimilation and PSII Function in Plants with Contrasting Pollutant Sensitivities

Yun, Myoung Hui 09 May 2007 (has links)
Ozone is known to be the most widespread phytotoxic air pollutant. Ozone causes visible injury, reductions in photosynthesis, growth, and yield. Plant response to ozone may vary with species, varieties, and physiological age. Comparison between sensitive and tolerant cultivars has a key role in assessing ozone damage, investigating the sites of cellular injury, and identifying ozone tolerance mechanism. The objectives of this study were to investigate the effects of high ozone concentration (200 ppb) as well as ambient ozone concentrations (under field conditions) on net CO2 assimilation and PSII function in plants with different sensitivities to ozone. Two species of plants, tobacco (Nicotiana tabacum L.) and black cherry (Prunus serotina) were studied. Gas exchange analysis and chlorophyll fluorometry were utilized to characterize physiological function. Two tobacco cultivars, Bel-B and Bel-W3, tolerant and sensitive to ozone, respectively, were grown in a greenhouse supplied with charcoal filtered air and then exposed to 200 ppb ozone for 4hr. Effects on chlorophyll fluorescence, net photosynthesis, and stomatal conductance are described. Quantum yield was calculated from chlorophyll fluorescence and the initial slope of the assimilation-light curve measured by the gas exchange method. Only the sensitive cultivar, Bel-W3, developed visible injury symptoms involving up to 50% of the 5th leaf. The maximum net photosynthetic rate of ozone-treated plants of the tolerant cultivar was reduced 40% compared to control plants immediately after ozone fumigation; however, photosynthesis recovered by 24 hr post fumigation and remained at the same level as control plants. In the sensitive cultivar, on the other hand, ozone exposure reduced maximum net photosynthesis up to 50%, with no recovery, apparently causing permanent damage to the photosystem. Reductions in apparent quantum efficiency, calculated from the assimilation-light curve, differed between cultivars. Bel-B showed an immediate depression of 14% compared to controls, whereas Bel-W3 showed a 27% decline. Electron transport rate (ETR), at saturating light intensity, decreased 58% and 80% immediately after ozone treatment in Bel-B and Bel-W3, respectively. Quantum yield decreased 28% and 36% in Bel-B and Bel-W3, respectively. It can be concluded that ozone caused a greater relative decrease in linear electron transport than maximum net photosynthesis, suggesting greater damage to PSII than the carbon reduction cycle. Two different sensitivity classes of black cherry, tolerant and sensitive, growing under natural environmental conditions in Giles County, VA were assessed for physiological responses to ambient ozone concentrations. Additional measurements were made at two other sites near Blacksburg. Leaf gas exchange rates and visible foliar injury were determined monthly during the growing seasons of 2000, 2001, and 2002 to characterize the relationship of injury to altered photosynthetic function. Ambient ozone levels were sufficient to induce visible symptoms which were highly correlated with a reduction in PnMAX (maximum net photosynthetic rate under saturating light conditions) and à CO2 (quantum yield for carbon reduction) only in sensitive black cherry. Electron transport rate (ETR) and quantum yield of PSII (à PSII) were also reduced in sensitive black cherry. Maximum photochemical efficiency (Fv/Fm) in sensitive trees was severely damaged by ambient ozone. There were positive correlations between increasing cumulative ozone concentration and substantial reductions in PnMAX and in à CO2 of sensitive trees compared to tolerant trees. There was a negative correlation between chlorophyll content and percent leaf injury in sensitive black cherry / Ph. D.
827

The Presence of Pathogenic Bacteria in Recirculating Aquaculture System Biofilms and their Response to Various Sanitizers

King, Robin K. 26 April 2001 (has links)
Recirculating aquaculture offers a prospect for successful fish farming, but this form of aquaculture presents a great potential for pathogenic microorganisms to become established in the system through the formation of biofilms. Biofilms are capable of forming on all aquaculture system components, incorporating the various microflora present in the water. Pathogenic microorganisms released from the biofilms are capable of causing recurring exposure to disease in both fish and humans. With the increased consumption of raw and rare fish, the presence of these bacteria in or on the fish could lead to ingestion of pathogens. There is also the possibility of cross-contamination during processing. The objectives of this study were to increase the understanding of pathogen incorporation into biofilms in recirculating aquaculture systems and to determine the effectiveness of various sanitizers in eliminating biofilms. Seven freshwater and two saltwater facilities were sampled, with eight different types of materials tested. Pathogenic bacteria were identified using Bacteriological Analytical Manual methods and rapid commercial test kits. Most of the pathogenic bacteria identified were opportunistic organisms ubiquitous in an aquatic environment. The most significant human pathogens were Bacillus cereus, the Shigella species and the Vibrio species. The major piscine pathogens of concern were Photobacterium damsela, the Vibrio species, and Aeromonas hydrophila. The most significant variation in biofilm pathogens was observed between facilities and not construction material. Buna-N rubber, polyvinyl chloride (PVC), chlorinated PVC, glass, fiberglass and stainless steel disks were suspended in 79.2 liter (20 gallon) aquariums stocked with Nile tilapia (Oreochromus niloticus). The tanks were inoculated with a known amount of green fluorescent protein (GFP) modified Escherichia coli and samples were removed on days 1,3, 7 and 15. The modified E. coli were isolated on Luria Broth Agar and plate counts were performed under ultraviolet light. There was no significant difference in the growth of the surrogate pathogen on the different materials. The GFP E. coli was isolated in the largest numbers 24 hours after inoculation of the tanks, with an approximate 1-log decrease after day 1. Days 3, 7, and 15 showed equivalent growth of the target organism. Two sets of disks were suspended in another six 79.2 liter (20 gallon) aquariums. The tanks were inoculated with a known amount of the surrogate pathogen, GFP E. coli, and after 24 hours one set of disks was removed from each tank. The second set of disks was removed and treated by spraying with water, alkaline cleanser, sodium hypochlorite, quaternary ammonium compound, or peracetic acid. Ozone was bubbled directly into one tank to treat another set of disks. The modified E. coli were isolated and counted. Total aerobic plate counts and Enterobacteriaceae counts were performed. Statistical analysis indicated that the type of material had no significant affect on the effectiveness of the sanitizers. It was determined that sodium hypochlorite (99.4591 overall reduction) and peracetic acid (98.8461 % overall reduction) were the most effective sanitizers overall, and ozone (32.9332 % overall reduction) was the least effective. / Ph. D.
828

Ultrahigh Vacuum Studies of the Reaction Mechanisms of Ozone with Saturated and Unsaturated Self-Assembled Monolayers

Fiegland, Larry Richard 25 January 2008 (has links)
Constructing a detailed understanding of the heterogeneous oxidation of atmospheric organic aerosols, both from a mechanistic and kinetic perspective, will enable researchers to predict the fate and lifetime of atmospheric gases and the particles with which they interact. In an effort to develop a more complete understanding of the interfacial reactions of ozone with vinyl-containing organic thin films, self-assembled monolayers that contain vinyl groups positioned precisely at the gas/surface interface were synthesized as model systems for atmospheric organic aerosols. To isolate the reactions of background gases with ozone or surface products, an ultrahigh vacuum surface analysis instrument was designed and constructed to explore the reactions of ozone with the atmospheric model systems. The surface reactions can be monitored in real-time with reflection absorption infrared spectroscopy (RAIRS) and mass spectrometry. The chemical identity of adsorbates on a surface can also be determined before or after a reaction with X-ray photoelectron spectroscopy (XPS). Disordering of the monolayers concurrent with the disappearance of the vinyl group was observed with RAIRS. New bands within the RAIR spectra were observed and assigned to carbonyl or carboxylic acids bound to the surface. Little oxidation of the sulfur head groups and no significant loss of carbon during the reaction was observed with XPS. A mechanism is proposed that includes the cross linking of the hydrocarbon chains within the monolayer, which impedes further oxidation of the sulfur head group and limits desorption of the chains. By RAIRS, the kinetics of the oxidation of the vinyl groups were tracked and an observed rate constant was determined by monitoring the changes in IR absorbance of the C=C bond. With the aid of the rate constant, an initial reaction probability for the collisions of ozone with vinyl groups positioned precisely at an interface was determined. The reaction probability is approximately three orders of magnitude greater than the reaction probability for an analogous gas-phase reaction, which demonstrates that the gas/surface interface plays an important role in this reaction. The results presented in this thesis should help develop a more detailed understanding of the interfacial reactions of pure ozone at surfaces. / Ph. D.
829

Understanding Middle Atmospheric Composition Variability from the Solar Occultation for Ice Experiment Instrument and Other Datasets

Das, Saswati 28 October 2022 (has links)
This dissertation comprises multiple studies surrounding the middle atmosphere's chemistry, composition, and dynamics. The middle atmosphere refers to the region from ~ 10 km to ~ 100 km and consists of the Stratosphere, Mesosphere, and Lower Thermosphere. The Stratosphere, Mesosphere, and Thermosphere are bounded by pauses where the strongest changes in chemical composition, movement, density, and thermal behavior take place. While several studies in the past have investigated the chemical composition of the middle atmosphere and quantified the distribution of various species from the stratosphere to the lower thermosphere, seasonal variations and redistribution of species resulting from transport events make it important to continuously monitor the middle atmosphere. Dynamic events such as Sudden Stratospheric Warmings (SSW) impact the temperature gradient and the zonal mean wind pattern in the stratopause. Descent events triggered by SSWs result in enhanced transport of species from the lower thermosphere to the stratosphere. Temperature increments during SSWs have an important impact on Polar Stratospheric Clouds (PSCs), resulting in Antarctic ozone enhancement and a smaller ozone hole. The middle atmosphere is, thus, home to a diverse range of dynamics and chemistry, making it a critical subject that warrants attention from the science community. The continuous monitoring of the middle atmosphere is important to this end. Several satellite missions in the past have been dedicated to monitoring the middle atmosphere and collecting data for decades. However, continual revisions and revaluations of measurement approaches and the introduction of novel space instruments are necessary to compensate for the limitations associated with existing missions, expand the extant specimen database, and improve phenomenon-centric observations. The Solar Occultation for Ice Experiment (SOFIE) is one of the two instruments on the Aeronomy of Ice in the Mesosphere (AIM) spacecraft. The studies presented in this dissertation primarily focus on the use of SOFIE observations combined with results from other science missions, an atmospheric model, and other datasets. Chapter I is an overview of the research goals and the motivations that propelled this research. In Chapter II, a validation study of the Version 1.3 SOFIE ozone data against the Atmospheric Chemistry Experiment (ACE) and the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) ozone data is presented. The SOFIE-ACE and SOFIE-MIPAS data pairs demonstrate similar variability in the ozone vertical profile. SOFIE vertical ozone profiles agree best with ACE from 30 - 70 km and MIPAS from 30-64 km. The mean difference values averaged over all seasons and both hemispheres are typically < 24% with ACE and < 20 % with MIPAS. Atomic oxygen is an important species in the mesopause region (~ 80 – 100 km) that impacts the region's ozone photochemistry and radiative balance. In Chapter III, SOFIE ozone measurements used to derive daytime atomic oxygen are compared to coincident retrievals from the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument and the Naval Research Laboratory Mass Spectrometer Incoherent Scatter radar (NRLMSIS 2.0) model. The datasets agree qualitatively. Results indicate a strong seasonal variation of atomic oxygen with summer and wintertime maxima at ~ 84 km and 94 km, respectively. The middle atmospheric composition is redistributed by the transport of species during SSWs. In Chapter IV, the 2019 SSW in the northern hemisphere that triggered a large transport event from the lower thermosphere to the stratosphere is evaluated using SOFIE, ACE, and the Modern-Era Retrospective analysis for Research and Applications (MERRA-2) observations. The event was similar to the major SSW-triggered descent events in the northern hemisphere since 2004 and led to the enhancement of nitric oxide produced by Energetic Particle Precipitation, attributed to unusual meteorology. The transport peak descended by ~ 5-6 km every 10 days. An SSW event occurred in the southern hemisphere in 2019 and led to enhanced ozone in the stratosphere. In Chapter V, satellite instruments, ground station data, and measurements from NASA Ozone Watch are used to conclude that large temperature increments evaporated PSCs, resulting in the lower conversion of halogen reservoir species into ozone-destroying forms. Thus, a large ozone enhancement was recorded in 2019. Chapter VI concludes all findings and Chapter VII summarizes future work. / Doctor of Philosophy / The middle atmosphere is the region between ~ 10 and 100 km in the atmosphere and is comprised of the Stratosphere, Mesosphere, and Lower Thermosphere. The middle atmosphere is a dynamic region, and the chemistry of this region is subject to variations occurring naturally or those triggered by anomalous events such as Sudden Stratospheric Warmings (SSW). Several species in the middle atmosphere need to be measured continuously or reevaluated for improved understanding. Dynamical events in the middle atmosphere are responsible for transporting and redistributing species in the middle atmosphere. Thus, the continuous monitoring of the middle atmosphere is necessary. Novel approaches with improved techniques and approaches are thus important to explore the middle atmosphere and quantify the chemistry of the region. The Solar Occultation for Ice Experiment (SOFIE) instrument is an instrument onboard the Aeronomy of Ice in the Mesosphere (AIM) spacecraft. SOFIE typically measures at high latitudes and looks at a wide range of wavelengths. This dissertation uses SOFIE and other datasets to evaluate the varying chemistry and dynamics of the middle atmosphere. The dissertation addresses four research problems and assimilates them to evaluate the middle atmosphere. Ozone is an important species in the middle atmosphere, which is present in the highest quantity in the stratosphere, followed by the lower thermosphere (~ 85 – 100 km). Ozone is important as it absorbs ultraviolet radiations and impacts the stratospheric radiative balance. Missions in the past have monitored ozone in the middle atmosphere. Novel approaches and improved observation techniques to compensate for the limitations of past missions and the continuous measurement of ozone are necessary. Thus, ozone retrievals from SOFIE are validated against independent and established datasets to demonstrate the robustness and usability of the SOFIE ozone data product within the atmospheric science community. Atomic oxygen is an important species in the mesopause region (~ 80 – 100 km) because of its role in ozone photochemistry and impact on the radiative balance of the region. It is technologically challenging to make direct measurements of atomic oxygen; thus, most conventionally, derived measurements and model results are used. To this date, atomic oxygen has been understood in a limited capacity with several inaccuracies. To improve the understanding of atomic oxygen and fill the current knowledge gaps, atomic oxygen is derived from SOFIE ozone measurements during the daytime using the Chapman equations for ozone photochemistry. Further, the derived atomic oxygen is compared to other established datasets from satellite instrument-derived measurements and model predictions. The seasonal variability of atomic oxygen is evaluated with a focus on the difference in its behavior during summer and winter. Lastly, inter-hemispheric differences in atomic oxygen distribution are evaluated. Apart from the natural atmospheric variation in species, SSW-triggered transport events redistribute species in the atmosphere. The 2019 SSW event in the northern hemisphere was similar to those in 2004, 2006, 2009, and 2013. Large quantities of nitric oxide were transported from the lower thermosphere to the stratosphere. Air poor in water vapor and methane was also transported. Atomic oxygen was transported from the lower thermosphere to several kilometers below in amounts higher than usual. The increased nitric oxide concentration in the stratosphere due to the transport catalytically destroyed the ozone in the region. The vertical transport rates were calculated to understand the speed of the descent. The low geomagnetic index in 2019, like in all years besides 2004, indicates that these events are attributed to unusual meteorology. An SSW event took place in the southern hemisphere in 2019 during the Antarctic winter. This led to a large increase in temperature, which evaporated the Polar Stratospheric Clouds (PSCs). PSCs provide their surface for converting halogen reservoir species into ozone-destroying reactive forms. The absence of PSCs during and immediately after the SSW event led to a lower conversion of halogen reservoir species into reactive forms. Satellite instrument measurements agree with theoretical expectations. The 2002 SSW in the SH led to similar outcomes and are compared to the 2019 event. Large enhancements in ozone in 2019 led to the smallest ozone hole since ~ 1982.
830

Evaluation of ozone treatment, pilot-scale wastewater treatment plant, and nitrogen budget for Blue Ridge Aquaculture

Sandu, Simonel Ioan 12 October 2004 (has links)
Sustainable tilapia production at Blue Ridge Aquaculture (BRA) is constrained by availability of high quality replacement water. I developed a pilot-scale wastewater treatment system to treat and reuse effluent presently discharged. An initial study was conducted to determine the response of the BRA waste stream to ozone application. Dosages of 6.9, 4.8 and 2.4 g O3 were applied for 30 minutes to 35 L of settled effluent. Optimum ozone dosage and reaction time, ozone transfer efficiency, ozone yield coefficient, degree of pollutant removal, and other ozone and water quality parameters were determined. Most results suggested that the maximum process feasibility limit for ozone contact time was approximately 9 minutes at an applied ozone concentration of 23g/m3 (6.9 g O3 dose). Formation of foam increased solids and COD removal up to three times. Poor removal or accumulation of DOC and TAN was observed, indicating the need for biological treatment following ozonation. Next, I evaluated a pilot station treatment train including sedimentation, microscreen filtration, fluidized bed denitrification, ozonation, aerobic biological oxidation in a trickling filter, and jar-test chemical flocculation. Significant improvements were found regarding solids, COD, cBOD5, NO3--N, TKN, and turbidity. Removal of foam after ozonation improved ozonation efficacy and pollutant removal. A nitrogen budget for the BRA facility was derived, indicating that 35% of the nitrogen applied in feed was assimilated in fish. I evaluated the possible impact of residual inorganic nitrogen forms from treated effluent upon fish in the recirculating systems. I found that less than 1% of the TAN produced would return the recovered stream, and that the existing biological contactors can remove it. Evaluation of TAN fate indicated that 84% was oxidized in biofilters, 14% was oxidized by passive nitrification, and 1% was removed by water exchange. For NO3-N, I determined that 56% was removed by passive denitrification and 44% by daily water exchange. The pilot station design was effective for removing organics and nutrients, and can serve as the basis for scale-up for treating and reusing the entire BRA effluent stream. / Ph. D.

Page generated in 0.0278 seconds