• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modifikace mikrostruktury hořčíkové slitiny Elektron 21 pomocí technologie elektronového paprsku / Modification of Elektron 21 magnesium alloy microstructure via electron beam treatment

Hanáček, Josef January 2018 (has links)
This work presents a basic research on the influence of electron beam technology modification on chemical, structural and phases changes of Elektron 21 magnesium alloy. The samples were systematically modified under various parameters of the electron beam and coatings on their respective surfaces were deposited via controlled plasma electrolytic oxidation (PEO) subsequently. The influence of the EB modification on the PEO coating formation was observed. Several samples with remelted fine-grained surface layer were obtained. Having a thickness of 10^1 to 10^3 µm, the average grain sizes in this layer were quantitatively evaluated. The performed EDS analysis revealed in identical chemical composition of the remelted surface layer and the original alloy material, despite the detected sample weight loss upon the EB treatment. XRD analysis revealed an increased content of Mg3(Nd,Gd) intermetallic phase in the remelted area. The PEO coatings were more compact and less porous as compared with their counterpart coatings on the original, unmodified alloy material.The results of the presented work showed, among others, a suitable microstructure and chemical composition of some of the modified samples that could potentially exhibit enhanced corrosion resistance as opposed to the unmodified material. The corrosion testing will be part of a follow-up study. More compact PEO coatings formed on some of the modified surface layers likely represent, too, a more durable variant as compared to the original material.

Page generated in 0.1594 seconds