1191 |
Mathematical Modeling of Transport Phenomena in Polymer Electrolyte and Direct Methanol Fuel CellsBirgersson, Erik January 2004 (has links)
This thesis deals with modeling of two types of fuel cells:the polymer electrolyte fuel cell (PEFC) and the directmethanol fuel cell (DMFC), for which we address four majorissues: a) mass transport limitations; b) water management(PEFC); c) gas management (DMFC); d) thermal management. Four models have been derived and studied for the PEFC,focusing on the cathode. The first exploits the slenderness ofthe cathode for a two-dimensional geometry, leading to areduced model, where several nondimensional parameters capturethe behavior of the cathode. The model was extended to threedimensions, where four di.erent flow distributors were studiedfor the cathode. A quantitative comparison shows that theinterdigitated channels can sustain the highest currentdensities. These two models, comprising isothermal gasphaseflow, limit the studies to (a). Returning to a two-dimensionalgeometry of the PEFC, the liquid phase was introduced via aseparate flow model approach for the cathode. In addition toconservation of mass, momentum and species, the model wasextended to consider simultaneous charge and heat transfer forthe whole cell. Di.erent thermal, flow fields, and hydrodynamicconditions were studied, addressing (a), (b) and (d). A scaleanalysis allowed for predictions of the cell performance priorto any computations. Good agreement between experiments with asegmented cell and the model was obtained. A liquid-phase model, comprising conservation of mass,momentum and species, was derived and analyzed for the anode ofthe DMFC. The impact of hydrodynamic, electrochemical andgeometrical features on the fuel cell performance were studied,mainly focusing on (a). The slenderness of the anode allows theuse of a narrow-gap approximation, leading to a reduced model,with benefits such as reduced computational cost andunderstanding of the physical trends prior to any numericalcomputations. Adding the gas-phase via a multiphase mixtureapproach, the gas management (c) could also be studied.Experiments with a cell, equipped with a transparent end plate,allowed for visualization of the flow in the anode, as well asvalidation of the two-phase model. Good agreement betweenexperiments and the model was achieved. Keywords:Fuel cell; DMFC; PEFC; one-phase; two-phase;model; visual cell; segmented cell; scale analysis; asymptoticanalysis.
|
1192 |
DSP based Chromatic Dispersion Equalization and Carrier Phase Estimation in High Speed Coherent Optical Transmission SystemsXu, Tianhua January 2012 (has links)
Coherent detection employing multilevel modulation formats has become one of the most promising technologies for next generation high speed transmission systems due to the high power and spectral efficiencies. Using the powerful digital signal processing (DSP), coherent optical receivers allow the significant equalization of chromatic dispersion (CD), polarization mode dispersion (PMD), phase noise (PN) and nonlinear effects in the electrical domain. Recently, the realizations of these DSP algorithms for mitigating the channel distortions in the coherent transmission systems are the most attractive investigations. The CD equalization can be performed by the digital filters developed in the time and the frequency domain, which can suppress the fiber dispersion effectively. The PMD compensation is usually performed in the time domain with the adaptive least mean square (LMS) and constant modulus algorithms (CMA) equalization. Feed-forward and feed-back carrier phase estimation (CPE) algorithms are employed to mitigate the phase noise (PN) from the transmitter (TX) and the local oscillator (LO) lasers. The fiber nonlinearities are compensated by using the digital backward propagation methods based on solving the nonlinear Schrödinger (NLS) equation and the Manakov equation. In this dissertation, we present a comparative analysis of three digital filters for chromatic dispersion compensation, a comparative evaluation of different carrier phase estimation methods considering digital equalization enhanced phase noise (EEPN) and a brief discussion for PMD adaptive equalization. To implement these investigations, a 112-Gbit/s non-return-to-zero polarization division multiplexed quadrature phase shift keying (NRZ-PDM-QPSK) coherent transmission system with post-compensation of dispersion is realized in the VPI simulation platform. In the coherent transmission system, these CD equalizers have been compared by evaluating their applicability for different fiber lengths, their usability for dispersion perturbations and their computational complexity. The carrier phase estimation using the one-tap normalized LMS (NLMS) filter, the differential detection, the block-average (BA) algorithm and the Viterbi-Viterbi (VV) algorithm is evaluated, and the analytical predictions are compared to the numerical simulations. Meanwhile, the phase noise mitigation using the radio frequency (RF) pilot tone is also investigated in a 56-Gbit/s NRZ single polarization QPSK (NRZ-SP-QPSK) coherent transmission system with post-compensation of chromatic dispersion. Besides, a 56-Gbit/s NRZ-SP-QPSK coherent transmission system with CD pre-distortion is also implemented to analyze the influence of equalization enhanced phase noise in more detail. / QC 20120528
|
1193 |
5 GHz Phase Lock Loop with Auto Band SelectionChen, Ming-Jing 06 August 2007 (has links)
This thesis presents the CMOS integer-N frequency synthesizer for 5 GHz WCDMA applications with 1.8V power supply. The frequency synthesizer is fabricated in a TSMC 0.18£gm CMOS 1P6M technology process. The frequency synthesizer consists of a phase-frequency detector, a charge pump, a low-pass loop filter, a voltage control oscillator, an auto-band selection, and a pulse-swallow divider. In pulse-swallow divider, this thesis use true single phase clock DFF proposed by Yuan and Svensson to work on high frequency region and to save the circuit area and power. This thesis also proposes an auto-band selection circuit to control the output frequency more precise and easier, and it can also reduce the frequency drift effect caused by technology process or temperature variation.
|
1194 |
Damping power system oscillations using a phase imbalanced hybrid series capacitive compensation schemePan, Sushan 13 January 2011
Interconnection of electric power systems is becoming increasingly widespread as part of the power exchange between countries as well as regions within countries in many parts of the world. There are numerous examples of interconnection of remotely separated regions within one country. Such are found in the Nordic countries, Argentina, and Brazil. In cases of long distance AC transmission, as in interconnected power systems, care has to be taken for safeguarding of synchronism as well as stable system voltages, particularly in conjunction with system faults. With series compensation, bulk AC power transmission over very long distances (over 1000 km) is a reality today. These long distance power transfers cause, however, the system low-frequency oscillations to become more lightly damped. As a result, many power network operators are taking steps to add supplementary damping devices in their systems to improve the system security by damping these undesirable oscillations. With the advent of thyristor controlled series compensation, AC power system interconnections can be brought to their fullest benefit by optimizing their power transmission capability, safeguarding system stability under various operating conditions and optimizing the load sharing between parallel circuits at all times.
This thesis reports the results of digital time-domain simulation studies that are carried out to investigate the effectiveness of a phase imbalanced hybrid single-phase-Thyristor Controlled Series Capacitor (TCSC) compensation scheme in damping power system oscillations in multi-machine power systems. This scheme which is feasible, technically sound, and has an industrial application potential, is economically attractive when compared with the full three-phase TCSC which has been used for power oscillations damping.<p>
Time-domain simulations are conducted on a benchmark model using the ElectroMagnetic Transients program (EMTP-RV). The results of the investigations have demonstrated that the hybrid single-phase-TCSC compensation scheme is very effective in damping power system oscillations at different loading profiles.
|
1195 |
Wideband phase-locked loops with high spectral purity for wireless communicationsLee, Kun Seok 05 July 2011 (has links)
The objective of this research is to demonstrate the feasibility of the implementation of wideband RF CMOS PLLs with high spectral purity using deep sub-micron technologies. To achieve wide frequency coverage, this dissertation proposed a 45-nm SOI-CMOS RF PLL with a wide frequency range to support multiple standards. The PLL has small parasitic capacitance with the help of a SOI technology, increasing the frequency tuning range of a capacitor bank. A designed and fabricated chip demonstrates the PLL supporting almost all cellular standards with a single PLL. This dissertation also proposed a third order sample-hold loop filter with two MOS switches for high spectral purity. Sample-hold operation improves in-band and out-of-band phase noise performance simultaneously in RF PLLs. By controlling the size of the MOS switches and control time, the nonideal effects of the MOS switches are minimized. The sample-hold loop filter is implemented within a 45-nm RF PLL and the performance is evaluated. Thus, this research provides a solution for wideband CMOS frequency synthesizers for multi-band, multi-mode, and multiple-standard applications in deep sub-micron technologies.
|
1196 |
フェーズフィールドモデルを用いた変態‐熱‐応力連成解析の定式化上原, 拓也, UEHARA, Takuya, 辻野, 貴洋, TSUJINO, Takahiro 04 1900 (has links)
No description available.
|
1197 |
フェーズフィールドモデルによる析出相内部の応力変化と残留応力のシミュレーション上原, 拓也, UEHARA, Takuya, 辻野, 貴洋, TSUJINO, Takahiro 06 1900 (has links)
No description available.
|
1198 |
繰返し荷重を加えたTiNi形状記憶合金ワイヤの応力ーひずみー温度関係の計測および数値解析内藤, 尚, NAITO, Hisashi, 松崎, 雄嗣, MATSUZAKI, Yuji, 池田, 忠繁, IKEDA, Tadashige, 佐々木, 敏幸, SASAKI, Toshiyuki 03 1900 (has links)
No description available.
|
1199 |
Continuum Approach to Two- and Three-Phase Flow during Gas-Supersaturated Water Injection in Porous MediaEnouy, Robert 09 December 2010 (has links)
Degassing and in situ formation of a mobile gas phase takes place when an aqueous phase equilibrated with a gas at a pressure higher than the subsurface pressure is injected in water-saturated porous media. This process, which has been termed supersaturated water injection (SWI), is a novel and hitherto unexplored means of introducing a gas phase into the subsurface. Herein is a first macroscopic account of the SWI process on the basis of continuum scale simulations and column experiments with CO2 as the dissolved gas. A published empirical mass transfer correlation (Nambi and Powers, Water Resour Res, 2003) is found to adequately describe the non-equilibrium transfer of CO2 between the aqueous and gas phases. Remarkably, the dynamics of gas-water two-phase flow, observed in a series of SWI experiments in homogeneous columns packed with silica sand or glass beads, are accurately predicted by traditional two-phase flow theory which allows the corresponding gas phase relative permeability to be determined. A key consequence of the finding, that the displacement of the aqueous phase by gas is compact at the macroscopic scale, is consistent with pore scale simulations of repeated mobilization, fragmentation and coalescence of large gas clusters (i.e., large ganglion dynamics) driven entirely by mass transfer. The significance of this finding for the efficient delivery of a gas phase below the water table in relation to the alternative process of in-situ air sparging and the potential advantages of SWI are discussed.
SWI has been shown to mobilize a previously immobile oil phase in the subsurface of 3-phase systems (oil, water and gas). A macroscopic account of the SWI process is given on the basis of continuum-scale simulations and column experiments using CO2 as the dissolved gas and kerosene as the trapped oil phase. Experimental observations show that the presence of oil ganglia in the subsurface alters gas phase mobility from 2-phase predictions. A corresponding 3-phase gas relative permeability function is determined, whereas a published 3-phase relative permeability correlation (Stone, Journal of Cana Petro Tech, 1973) is found to be inadequate for describing oil phase flow during SWI. A function to predict oil phase relative permeability is developed for use during SWI at high aqueous phase saturations with a disconnected oil phase and quasi-disconnected gas phase. Remarkably, the dynamics of gas-water-oil 3-phase flow, observed in a series of SWI experiments in homogeneous columns packed with silica sand or glass beads, are accurately predicted by traditional continuum-scale flow theory. The developed relative permeability function is compared to Stone’s Method and shown to approximate it in all regions while accurately describing oil flow during SWI. A published validation of Stone’s Method (Fayers and Matthews, Soc of Petro Eng Journal, 1984) is cited to validate this approximation of Stone’s Method.
|
1200 |
Damping power system oscillations using a phase imbalanced hybrid series capacitive compensation schemePan, Sushan 13 January 2011 (has links)
Interconnection of electric power systems is becoming increasingly widespread as part of the power exchange between countries as well as regions within countries in many parts of the world. There are numerous examples of interconnection of remotely separated regions within one country. Such are found in the Nordic countries, Argentina, and Brazil. In cases of long distance AC transmission, as in interconnected power systems, care has to be taken for safeguarding of synchronism as well as stable system voltages, particularly in conjunction with system faults. With series compensation, bulk AC power transmission over very long distances (over 1000 km) is a reality today. These long distance power transfers cause, however, the system low-frequency oscillations to become more lightly damped. As a result, many power network operators are taking steps to add supplementary damping devices in their systems to improve the system security by damping these undesirable oscillations. With the advent of thyristor controlled series compensation, AC power system interconnections can be brought to their fullest benefit by optimizing their power transmission capability, safeguarding system stability under various operating conditions and optimizing the load sharing between parallel circuits at all times.
This thesis reports the results of digital time-domain simulation studies that are carried out to investigate the effectiveness of a phase imbalanced hybrid single-phase-Thyristor Controlled Series Capacitor (TCSC) compensation scheme in damping power system oscillations in multi-machine power systems. This scheme which is feasible, technically sound, and has an industrial application potential, is economically attractive when compared with the full three-phase TCSC which has been used for power oscillations damping.<p>
Time-domain simulations are conducted on a benchmark model using the ElectroMagnetic Transients program (EMTP-RV). The results of the investigations have demonstrated that the hybrid single-phase-TCSC compensation scheme is very effective in damping power system oscillations at different loading profiles.
|
Page generated in 0.0853 seconds