• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

FORMATION OF SILICON NANOCRYSTALS IN SiO2 BY SILICON IMPLANTATION AND SUBSEQUENT ANNEALING

IBNA, SHAIKH MD ASKER 04 1900 (has links)
<p>Since the first description of Si nanocrystals, research in this field has gone through raid progress and potential applications of Si nanocrystals have been established. There are several methods applicable to the fabrication of Si nanocrystals with one of the most used being ion implantation followed by thermal annealing. Two types of thermal annealing are available for use: furnace annealing (FA) for several hours, normally in an N<sub>2</sub> atmosphere; and rapid thermal annealing (RTA) for a short time (less than a few minutes), again in an inert atmosphere such as N<sub>2</sub>. The formation of the nanocrystals then proceeds with decomposition, segregation, diffusion, nucleation, aggregation, growth and crystallization. This formation requires temperatures in excess of 1000<sup>o</sup> C such that noticeable photoluminescence may be observed. This thesis explores the fabrication of Si nanocrystals using the McMaster ion implanter and subsequent RTA. The implantation conditions required to form luminescent nanocrystals are determined. For example, for an implantation energy of 10 KeV a minimum dose of 1.5 10<sup>16</sup> ions cm<sup>-2</sup> is required. The relationship between luminescent intensity and post-implantation annealing is also explored. An optimum annealing temperature of 1100<sup>o</sup>C is found. For the first time to the author’s knowledge, a study of the effects of thin film thickness on luminescent intensity is conducted. The major conclusions of this thesis are i) a specific thickness of oxide layer has the maximum PL for a fixed implantation energy and implantation dose, ii) PL intensity is inversely proportional with measuring temperature., iii) the type of oxidation process has a large effect on PL intensity.</p> / Master of Applied Science (MASc)

Page generated in 0.0653 seconds