• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 11
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 30
  • 30
  • 17
  • 15
  • 7
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Quadratic involutions on the plane rational quartic ...

Ashcraft, Thomas Bryce, January 1900 (has links)
Thesis (Ph. D.)--Johns Hopkins University, 1911. / Vita.
2

Quadratic involutions on the plane rational quartic ...

Ashcraft, Thomas Bryce, January 1900 (has links)
Thesis (Ph.D.)--Johns Hopkins university, 1911. / Vita.
3

Ueber den Satz, dass eine ebene, algebraische Kurve 6. Ordnung mit 11 sich einander ausschliessenden Ovalen nicht existiert

Löbenstein, Klara, January 1910 (has links)
Thesis (doctoral)--Georg-August-Universität zu Göttingen, 1909. / Vita. Includes bibliographical references.
4

Self-projective curves of the fourth and fifth orders ...

Winger, Roy Martin, January 1914 (has links)
Thesis (Ph. D.)--John Hopkins University, 1912. / "Reprinted from American journal of mahtematics, vol. XXXVI, no. 1." Biographical.
5

Plane Curves

Heflin, Billy M. 01 1900 (has links)
The purpose of this thesis is to present a definition and some properties of a curved arc in a plane and to present a definition and some properties of the Jordan curve.
6

Characterization of multi-Frobenius non-classical plane curves and construction of complete plane (N, d)-arcs

Borges Filho, Herivelto Martins 14 October 2009 (has links)
This work is composed of two independent parts, both addressing problems related to algebraic curves over finite fields. In the first part, we characterize all irreducible plane curves defined over Fq which are Frobenius non-classical for different powers of q. Such characterization gives rise to many previously unknown curves which turn out to have some interesting properties. For instance, for n [greater-than or equal to] 3 a curve which is both q- and qn-Frobenius non-classical will have its number of Fqn-rational points attaining the Stöhr-Voloch bound. In the second part, we study the arc property of several plane curves and present new complete (N, d)-arcs in PG(2, q). Some of these arcs (viewed as linear (N, 3,N - d)-codes) are just a small constant away from the Griesmer bound and for some small values of q the bound is achieved. In addition, this part also answers a question of Voloch about the arc property of a certain family of curves with many rational points, and another question of Giulietti et al about the arc property of q-Frobenius non-classical plane curves. / text
7

Monodromia de curvas algébricas planas / Monodromy of plane algebraic curves

Fantin, Silas 26 September 2007 (has links)
Em 1968, J. Milnor introduziu a monodromia local de Picard-Lefschetz de uma hipersuperfície complexa com singularidade isolada. Em seguida, E. Brieskorn perguntou se esta monodromia é sempre finita. Em 1972, Lê Dúng Trâng provou que a resposta é positiva no caso de germes de curvas planas analíticas irredutíveis. Na época, já eram conhecidos exemplos de curvas planas com dois ramos e monodromia finita. Em 1973, N. A?Campo produziu o primeiro exemplo de germe de curva plana com dois ramos e monodromia infinita. Portanto, a questão mais simples, e ainda em aberto, que se coloca neste contexto, é a determinação da finitude da monodromia para germes de curvas planas com dois ramos. O presente trabalho, consiste em determinar, em várias situações, o polinômio mínimo da monodromia de germes de curvas analíticas planas com dois ramos, cujos gêneros são menores ou iguais a dois, o que permite decidir a sua finitude / In 1968, J. Milnor introduced the Picard-Lefschetz monodromy of a complex hypersurface with an isolated singularity. Subsequently, E. Brieskorn asked if this monodromy is always finite. In 1972, Lê Dúng Trâng proved that the answer is positive in the case of irreducible analytic germs of plane curves. At this time, examples of plane curves with two branches and finite monodromy were known. In 1973, N. A?Campo produced the first example of a germ of plane curve with two branches and infinite monodromy. Therefore, the simplest and still open problem in this context is to determine whether the monodromy of a plane curve with two branches is finite or infinite. The present work consists in determining, in several situations, the minimal polynomial of the monodromy for germs of plane analytic curves with two branches, whose genera are less or equal than two, wich allows us to decide its finiteness
8

Monodromia de curvas algébricas planas / Monodromy of plane algebraic curves

Silas Fantin 26 September 2007 (has links)
Em 1968, J. Milnor introduziu a monodromia local de Picard-Lefschetz de uma hipersuperfície complexa com singularidade isolada. Em seguida, E. Brieskorn perguntou se esta monodromia é sempre finita. Em 1972, Lê Dúng Trâng provou que a resposta é positiva no caso de germes de curvas planas analíticas irredutíveis. Na época, já eram conhecidos exemplos de curvas planas com dois ramos e monodromia finita. Em 1973, N. A?Campo produziu o primeiro exemplo de germe de curva plana com dois ramos e monodromia infinita. Portanto, a questão mais simples, e ainda em aberto, que se coloca neste contexto, é a determinação da finitude da monodromia para germes de curvas planas com dois ramos. O presente trabalho, consiste em determinar, em várias situações, o polinômio mínimo da monodromia de germes de curvas analíticas planas com dois ramos, cujos gêneros são menores ou iguais a dois, o que permite decidir a sua finitude / In 1968, J. Milnor introduced the Picard-Lefschetz monodromy of a complex hypersurface with an isolated singularity. Subsequently, E. Brieskorn asked if this monodromy is always finite. In 1972, Lê Dúng Trâng proved that the answer is positive in the case of irreducible analytic germs of plane curves. At this time, examples of plane curves with two branches and finite monodromy were known. In 1973, N. A?Campo produced the first example of a germ of plane curve with two branches and infinite monodromy. Therefore, the simplest and still open problem in this context is to determine whether the monodromy of a plane curve with two branches is finite or infinite. The present work consists in determining, in several situations, the minimal polynomial of the monodromy for germs of plane analytic curves with two branches, whose genera are less or equal than two, wich allows us to decide its finiteness
9

Intersection Number of Plane Curves

Nichols, Margaret E. 25 November 2013 (has links)
No description available.
10

CURVING TOWARDS BÉZOUT: AN EXAMINATION OF PLANE CURVES AND THEIR INTERSECTION

Cohen, Camron Alexander Robey 02 July 2020 (has links)
No description available.

Page generated in 0.0222 seconds