851 |
Design, synthesis and single molecule force spectroscopy of biosynthetic polypeptides / Design, synthèse et spectroscopie de force à l’échelle de la molécule unique de polypeptides biosynthétiquesAsano, Marie 14 October 2016 (has links)
Le repliement des protéines est principalement gouverné par les interactions spécifiques des structures secondaires. 1, 2 Toutefois, il existe expérimentalement peu d’informations sur les propriétés mécaniques fondamentales des hélices α et des feuillets β isolées. Les recherches antérieures sur l'étude du déploiement des hélices sont peu concluantes 3-5 et à notre connaissance l'étude des propriétés mécaniques d'un feuillet β isolé, intramoléculaire est sans précédent. Les copolymères PEG114-b-poly(L-lysine)134-(2-pyridyl disulfure),PEG114-b-poly(L-lysine)-b-PEG114 et poly(L-acide glutamique)85-b-(2-pyridyldisulfure) été synthétisés et utilisés comme systèmes modèles pour tester les propriétés mécaniques des motifs secondaires de type hélice α et feuillet β. Les résultats obtenus se sont révélés être en bon accord avec les résultats théoriques obtenus en utilisant un modèle statistique basé sur AGAGIR 6. La différence de force de déroulement comparant les hélices de poly(L-Lysine) ≈ 30 pN et de poly(L-acide glutamique) ≈ 20 pN des copolymères diblocs a été attribuée à l'hydrophobicité différente des chaînes latérales. La plus grande hydrophobie dumotif lysine conduit à de plus grandes interactions entre les chaînes latérales qui empêchent les fluctuations aléatoires au sein de l’hélice, et conduisent à une stabilité supérieure de l'hélice α. Lorsque les expériences ont été conduites dans des conditions favorisant la solubilité des chaînes latérales de lysine, les interactions ont diminué à une force de ≈ 20 pN, similaire à la force des interactions observées pour le poly(L-acide glutamique). Nous supposons qu'un minimum de ≈ 20 pN est nécessaire pour rompre la liaison hydrogène en maintenant l'hélice α, car cette force a été obtenue dans des conditions où les interactions de la chaîne latérale étaient minimisées. La présence de plateaux de force constants et d'inflexions correspondantes démontre une force de dépliement indépendante de la longueur, qui supporte un mécanisme de déroulement tour-par-tour pour l'hélice. De plus, la plus grande hydrophobie des chaînes latérales a été suggérée non seulement pour stabiliser la structure en hélice, mais également pour inhiber la formation d'une structure de type β-turn métastable intermédiaire lorsque les forces entropiques dominent. Des études préliminaires ont été effectuées sur le système de PEG114-bpoly(L-Lysine)134-(2-pyridyl disulfure) après induction d’une transition - β par un traitement thermique dans des conditions basiques. Une inflexion à une force≈ 70 pN a été obtenue, ce qui suggère la formation d'une interaction de type feuillet β. Une stratégie bottom-up a ainsi été proposée avec succès, démontrant le potentiel d'utilisation de tels systèmes artificiels pour simplifier et modéliser des systèmes biologiques réels. La compréhension de ces modèles isolés plus simples aidera sans doute la compréhension de systèmes plus complexes. / Proteins fold by the initial, preferential folding of secondarystructures 1, 2, however surprisingly little is known about the basic mechanicalproperties of isolated α-helices and β-sheets from an experimental standpoint.Previous investigations into studying the generic unfolding behaviour of α-heliceshave proved inconclusive 3-5, and to our knowledge the study of an isolated,intramolecular β-sheet is unprecedented.Bioinspired PEG114-b-poly(L-glutamic acid)85-(2-pyridyl disulphide),PEG114-b-poly(L-lysine)134-(2-pyridyl disulphide) and PEG114-b-poly(Llysine)134–b-PEG114 were designed, synthesized and utilized as model systems toprobe the mechanical properties of α-helix and β-sheet secondary motifs. Theobtained results were shown to be in good agreement with theoretical resultsobtained by utilizing a AGAGIR-based statistical mechanical model 6. Thedifference in unravelling force comparing the helices of poly(L-Lysine) ≈30 pNand poly(L-glutamic acid) ≈20 pN diblock copolymers was attributed to thediffering hydrophobicity of the side chains. The greater hydrophobicity of thelysine allowed greater interactions between the side chains and sterically hinderedrandom helix-coil fluctuations, which lead to a superior α-helix stability. Whenexperiments were conducted in conditions promoting the solubility of the lysineside chains, the interactions decreased to a force of ≈20 pN, similar to the force ofinteractions observed for the poly(L-glutamic acid). We infer that a minimum of≈20 pN is needed to rupture the hydrogen bonding maintaining the α-helix as thisforce was obtained in conditions where the side chain interactions wereminimized.The presence of constant force plateaus and corresponding inflectionsdemonstrates a length independent unfolding force, which supports a turn-by-turnunfolding mechanism for the α-helix.In addition, the greater hydrophobicity of the side chains was suggestedto not only stabilize the α-helix structure, but also to inhibit the formation of anintermediate metastable β-hairpin-like structure when entropic forces dominate.Preliminary studies were also conducted on the PEG114-b-poly(LLysine)134-(2-pyridyl disulphide) system after a α-β transition had been inducedby heat in basic conditions, where an inflection at a much higher force of ≈ 70 pNwas obtained suggesting the formation of a β-sheet interaction.A bottom-up, investigative strategy has thus been successfully proposeddemonstrating the potential of utilizing such artificial systems to simplify andexemplify real biological systems. The comprehension of these simpler isolatedmodels will no doubt aid the understanding of more complex systems.
|
852 |
Influência dos plastificantes alternativos ao dioctil ftalato nas propriedades de compostos de poli (cloreto de vinila)Mattana, Mônica January 2017 (has links)
O poli(cloreto de vinila) - PVC é considerado um polímero muito versátil devido à possibilidade deste ser formulado mediante a incorporação de aditivos, alterando suas características originais. Plastificantes a base de ftalatos, como o di(2-etilhexil) ftalato (DOP) são os mais utilizados, porém, existem regulamentações que estão restringindo a sua utilização, intensificando-se os estudos com possíveis alternativos. Desta forma, este trabalho visa avaliar a influência de plastificantes de diferentes naturezas nas propriedades físicas, mecânicas, térmicas e reológicas do PVC plastificado. Para formulação dos compostos foi utilizado a resina Norvic SP1000 produzida via suspensão, com VK65 e portanto, propícia para aplicações de materiais flexíveis, além disso, para cada composto utilizou-se uma dosagem de 60 pcr de sete diferentes plastificantes: DOP, considerado como referência para comparação dos resultados, diisononil ciclohexano (DINCH), di(2-etilhexil) ciclohexanoato (DOCH), di(2-etilhexil) adipato (DOA), di(2-etilhexil) tereftalato (DOTP), óleo de soja epoxidado (OSE) e plastificante de óleos vegetais (DIMIT) Neste estudo foram efetuadas avaliações nos compostos como, gelificação e fusão, reologia via reômetro de placas paralelas, densidade, índice de fluidez entre outras para compreender a influência de cada plastificante no processamento do composto e várias caracterizações no produto final como estabilidade térmica dos compostos via TGA, Metrastat, propriedades óticas, propriedades mecânicas como dureza Shore A, tração, resistência a abrasão, resiliência, envelhecimento em câmara UV assim como ensaios de exsudação dos plastificantes. Os resultados indicam comportamentos distintos do PVC em função da natureza química do plastificante utilizado. O plastificante DIMIT possui boa estabilidade térmica, porém os resultados de cor e parâmetros de processamento foram insatisfatórios quando comparados ao DOP, já os plastificantes OSE e DOA apresentaram bons resultados para as propriedades avaliadas. Conclui-se que dentre os plastificantes analisados não foi possível determinar qual seria o melhor para substituição direta do DOP considerando toda a gama de produtos flexíveis de PVC, contudo esse trabalho colabora para a avaliação e seleção do melhor plastificante com base nos requisitos de cada aplicação do produto. / The poly (vinyl chloride) - PVC is a very versatile polymer due to the possibility of being formulated by incorporating additives, which can change the resin characteristics. Plasticizers composed of phthalates, such as di(2-ethylhexyl) phthalate (DOP), are the most used, however, there are regulations restricting the use of this kind of plasticizers, intensifying studies with possible replacement alternatives. In this way, the objective of this work is to evaluate the influence of plasticizers from different sources in PVC, mainly physical, mechanical thermal stability, and rheological properties in the plasticized PVC. In the formulation of the compounds it was used the resin Norvic SP1000, product with VK65 and produced by suspension, suitable for flexible materials applications. In addition, it was used 60 phr of seven different plasticizers for each compound: DOP, considered as reference for all results, cyclohexane diisononyl (DINCH), di(2-ethylhexyl) cyclohexanoate (DOCH), di(2-ethylhexyl) adipate (DOA), di(2-ethylhexyl) terephthalate (DOTP), epoxidized soybean oil (OSE) and plasticizer produced from vegetable oils (DIMIT). In this study, the compounds were evaluated with many characterization analyzes, such as gelling and melting point in a torque rheometer, rheology by parallel plate rheometer, density, melt flow index in order to understand the influence of each plasticizer on the material processing Some characterizations in the final product as thermal stability through TGA, Metrastat, optical and mechanical properties such as hardness Shore A, tensile strength, abrasion resistance, resilience, aging in UV chamber as well as exudation tests. The results indicate different behaviors of PVC depending on the chemical nature of the plasticizer used. Results indicate that the DIMIT plasticizer had good thermal stability, but the color and processability results were unsatisfactory when compared to the DOP. In the other hand, the OSE and DOA presented good results for the evaluated properties. It can be concluded that among the plasticizers analyzed it wasn´t possible to determine the best for direct DOP replacement considering the entire range of flexible PVC products. However, this work contributes to the evaluation and selection of the best plasticizer based on the requirements of each application.
|
853 |
Poli(indeno) fosfonado : síntese, propriedades e uso como eletrólito em membranas a base de PBIFreitas, Mauricio Azevedo de January 2018 (has links)
Neste trabalho, um polímero eletrólito derivado do poli(indeno) (PInd) foi desenvolvido como componente de membranas poliméricas a base de polibenzimidazol (PBI) para célula a combustível de média temperatura. Foi investigado o método de síntese, envolvendo a reação de fosfonação pelo método de Friedel-Crafts assistido por catalisador ácido de Lewis AlCl3. O polímero poli(indeno) fosfonado (PPInd) foi comparado com seu análogo sulfonado, o poli(indeno) sulfonado (SPInd), e usados nas blendas com 5, 7,5 e 10% em peso com o PBI. Os polímeros precursores foram caracterizados por espectroscopia de infravermelho, espectroscopia de ressonância magnética nuclear, espectroscopia de energia dispersiva, espectrometria de espalhamento Rutherford, análise termogravimétrica acoplada com espectrometria de massas e calorimetria exploratória diferencial. As blendas PPInd/PBI e SPInd/PBI foram caracterizadas por análise termogravimétrica, grau de dopagem e espectroscopia de impedância eletroquímica. A modificação realizada pelo método de Friedel-Crafts permitiu a obtenção do poli(indeno) fosfonado parcialmente solúvel em solventes orgânicos e água, com grau de modificação de 81%. Houve convergência dos teores de modificação encontrados pelas análises termogravimétrica, espectrometria de espalhamento Rutherford e espectroscopia de energia dispersiva. O polímero PPInd apresentou estabilidade química na temperatura de operação da célula a combustível de média temperatura, passando por processos de degradação típicos de sua estrutura aromática fosfonada. A degradação dos polímeros PInd, PPInd e SPInd ocorreu majoritariamente com cisão de unidades monoméricas de indeno não funcionalizado. A inserção dos polímeros modificados PPInd e SPInd no PBI resultou no aumento da condutividade iônica, tendo a blenda com 10% de PPInd apresentado o maior valor de condutividade protônica (0,015 S.cm-1), a 25 oC. O uso do poli(indeno) modificado com grupos ácido fosfônico visa aumentar a gama de eletrólitos para células a combustível de média temperatura. / In this work a polymer electrolyte derivated from the poly(indene) (PInd) was developed to be used as polymer electrolyte membrane in medium-temperature fuel cells. The modification method, based on the AlCl3 assisted Friedel-Crafts reaction, was investigated as fosfonation strategy. The phosphonated poly(indene) was compared to its similar sulphonated poly(indene) and they were used in blends of 5, 7.5 and 10wt% in polybenzimidazole (PBI). Pristine polymers were characterized by infrared spectroscopy, nuclear magnetic resonance spectroscopy, energy dispersive spectroscopy, Rutherford backscattering spectrometry, thermogravimetric analysis coupled with mass spectrometry and differential scanning calometry. The PPInd/PBI and SPInd/PBI blends were characterized by thermogravimetric analysis, doping level and electrochemical impedance spectroscopy. The modification by Friedel-Crafts reaction produced phophonated poly(indene) with degree of phosphonation of 81%, partially soluble in organic solvent and water. It was found convergence on the results for degree of phosphonation calculated by thermogravimetric analysis, Rutherford backscattering spectrometry and energy dispersive spectroscopy. PPInd presented chemical and thermal stabilities within the fuel cell operating temperature, passing by typical degradation processes of macromolecules made of phosphonated aromatic structures. The degradation of PPInd and SPInd occurred mainly by cleavage of monomeric units of non-funcionalized indene. Addition of modified polymers PPInd and SPInd resulted in increase of PBI’s ionic conductivity. 10PPInd/PBI blend presented the highest ionic conductivity (0.015 S.cm-1) at 25 oC. The use of phosphonated poly(indene) on PBI membranes enlarges the variety of available polymer electrolyte membranes for medium-temperature fuel cells.
|
854 |
Modification of poly(lactic acid) via olefin cross-metathesisSinclair, Fern January 2017 (has links)
Poly(lactic acid), PLA, is a viable replacement to petroleum derived polymers due to its renewable feedstock, biodegradability and bioassimilability, yet improvements in its physical, thermal and mechanical properties are required before it can fully enter all commodity markets. This thesis investigates olefin cross-metathesis (CM) as a synthetic strategy to modify the properties of PLA. The use of novel lanthanide and actinide catalysts on the microstructure control of PLA are also explored. The Tebbe reagent was used in a new synthetic strategy to produce a novel olefin derivative of lactide (MML). Olefin CM of MML with hex-1-ene was successful but polymerisation pre- and post-CM was unsuccessful due to monomer instability. CM of another olefin derivative of lactide, 3-methylenated lactide (3-ML) was successful with aliphatic alkenes; hex-1-ene to dodec-1-ene. To overcome competing alcoholysis of the functionalised monomers, which prevented polymerisation, hydrogenation was used to remove the olefin entity followed by successful ring-opening polymerisation (ROP) to produce polymers of low glass-transition temperatures (Tg). Post-polymerisation CM on an olefin containing polymer P(β-heptenolactone) P(β-HL), with methyl acrylate and an epoxide, generated functionalised homopolymers with increased Tg’s. Co-polymerisation of lactide with β-HL generated novel gradient-copolymers. Olefin CM with 15 different cross-partners produced functionalised copolymers with different thermal properties. Based on this route a new methodology was created to introduce two unique functionalities into the polymer backbone by manipulation of the olefin reactivities. Finally, in a collaborative project, uranium and cerium catalysts, Me3SiOU(OArP)3 and Me3SiOCe(OArP)3 - designed out-with the group- were tested and compared as ROP catalysts for lactide. Both catalysts were active in living polymerisations of L-lactide and under immortal conditions the activity and rates of the catalysts were switched, accounted for by a change in the coordination sphere due to ligand displacement. ROP of rac-lactide using the uranium analogue produced heterotactic-biased PLA with a Pr = 0.79.
|
855 |
Evaluation of bacterial polymers as protective agents for sensitive probiotic bacteriaAdebayo, Olajumoke O. January 2018 (has links)
Probiotics are live microorganisms which when administered in adequate amounts confer one or more health benefits on the host. Different processing conditions, the acidic condition of the stomach and exposure to hydrolytic enzymes affect the viability and efficacy of probiotic organisms. This study investigated the protective effects of two biopolymers poly-gamma-glutamic acid (γ-PGA) and bacterial cellulose (BC) on probiotics during freeze drying and during exposure to simulated intestinal juices and bile salts. The antibacterial property of Bifidobacterium strains was also investigated against four pathogenic bacteria. γ-PGA, a naturally occurring biopolymer was produced by two bacteria (Bacillus subtilis ATCC 15245 and B. licheniformis ATCC 9945a) in GS and E media, γ-PGA yields of about 14.11g/l were achieved in shake flasks and molecular weight of up to 1620 k Da was recorded, γ-PGA production was scaled up in a fermenter with B. subtilis using GS medium. BC, an edible biopolymer was produced by Gluconacetobacter xylinus ATCC 23770 in HS medium and a modified HS (MHS) medium. A yield of about 1.37g/l was recorded and BC production with MHS medium was used for probiotic application. B. longum NCIMB 8809 B. breve NCIMB 8807 and B. animalis NCIMB 702716 showed the best antimicrobial properties against the investigated pathogens. Survival of Bifidobacterium strains was improved when protected with powdered BC (PBC) although γ-PGA offered better protection than PBC. Viability of B. longum NCIMB 8809, B. breve NCIMB 8807 and B. animalis NCIMB 702716 in simulated gastric juice (SGJ) and simulated intestinal juice with bile salts was improved when protected with 5% γ-PGA and 5% γ-PGA+PBC with a reduction of < 1 Log CFU/ml while a reduction of ≤2 Log CFU/ml was recorded in PBC protected cells. Protecting Bifidobacterium strains with γ-PGA, PBC or a novel γ-PGA + PBC combination is a promising method to deliver probiotic bacteria to the target site in order to confer their health benefits on the host.
|
856 |
A Simultaneous Physically and Chemically Gelling Polymer System for Endovascular Embolization of Cerebral AneurysmsJanuary 2012 (has links)
abstract: Current treatment methods for cerebral aneurysms are providing life-saving measures for patients suffering from these blood vessel wall protrusions; however, the drawbacks present unfortunate circumstances in the invasive procedure or with efficient occlusion of the aneurysms. With the advancement of medical devices, liquid-to-solid gelling materials that could be delivered endovascularly have gained interest. The development of these systems stems from the need to circumvent surgical methods and the requirement for improved occlusion of aneurysms to prevent recanalization and potential complications. The work presented herein reports on a liquid-to-solid gelling material, which undergoes gelation via dual mechanisms. Using a temperature-responsive polymer, poly(N-isopropylacrylamide) (poly(NIPAAm), the gelling system can transition from a solution at low temperatures to a gel at body temperature (physical gelation). Additionally, by conjugating reactive functional groups onto the polymers, covalent cross-links can be formed via chemical reaction between the two moieties (chemical gelation). The advantage of this gelling system comprises of its water-based properties as well as the ability of the physical and chemical gelation to occur within physiological conditions. By developing the polymer gelling system in a ground-up approach via synthesis, its added benefit is the capability of modifying the properties of the system as needed for particular applications, in this case for embolization of cerebral aneurysms. The studies provided in this doctoral work highlight the synthesis, characterization and testing of these polymer gelling systems for occlusion of aneurysms. Conducted experiments include thermal, mechanical, structural and chemical characterization, as well as analysis of swelling, degradation, kinetics, cytotoxicity, in vitro glass models and in vivo swine study. Data on thermoresponsive poly(NIPAAm) indicated that the phase transition it undertakes comes as a result of the polymer chains associating as temperature is increased. Poly(NIPAAm) was functionalized with thiols and vinyls to provide for added chemical cross-linking. By combining both modes of gelation, physical and chemical, a gel with reduced creep flow and increased strength was developed. Being waterborne, the gels demonstrated excellent biocompatibility and were easily delivered via catheters and injected within aneurysms, without undergoing degradation. The dual gelling polymer systems demonstrated potential in use as embolic agents for cerebral aneurysm embolization. / Dissertation/Thesis / Ph.D. Bioengineering 2012
|
857 |
Efeito de modificadores poliméricos e argila organofílica nas propriedades do biopolímero poli (ácido lático) – PLA.CUNHA, Bartira Brandão da. 06 July 2018 (has links)
Submitted by Maria Medeiros (maria.dilva1@ufcg.edu.br) on 2018-07-06T12:08:50Z
No. of bitstreams: 1
BARTIRA BRANDÃO DA CUNHA - TESE (PPGCEMat) 2015.pdf: 9101656 bytes, checksum: d0261dbd09ba7b441015349ba1e717c3 (MD5) / Made available in DSpace on 2018-07-06T12:08:50Z (GMT). No. of bitstreams: 1
BARTIRA BRANDÃO DA CUNHA - TESE (PPGCEMat) 2015.pdf: 9101656 bytes, checksum: d0261dbd09ba7b441015349ba1e717c3 (MD5)
Previous issue date: 2015-01-29 / Capes / A crescente busca por materiais alternativos que tragam menos dano ao meio ambiente resultou no desenvolvimento dos polímeros biodegradáveis. Estes materiais, do ponto de vista do processamento de obtenção, apresentam redução no consumo energético que aliada à ausência de inércia na sua degradação implicam na redução do acúmulo de lixo plástico no meio ambiente. Entretanto, alguns desses polímeros, como o poli (ácido lático) - PLA, por exemplo, apresentam algumas limitações quanto a sua aplicação, por ser um polímero de alta fragilidade e rigidez. A fim de ampliar o uso comercial do PLA, algumas pesquisas estão sendo desenvolvidas com o intuito de melhorar essas propriedades. Com base nisto, o atual trabalho de doutorado teve por objetivo estudar o efeito de modificadores poliméricos e argila organofílica nas propriedades do PLA a fim de se obter maior conhecimento sobre esse novo tipo de material. Para tanto o trabalho ocorreu em duas etapas: na primeira foram usados três modificadores poliméricos diferentes, cada um foi usado individualmente com o PLA, na proporção 90/10 (PLA/Modificador); na segunda, para cada sistema PLA/Modificador, foi acrescentado o teor de 3 pcr (partes por cem de resina) de argila organofílica. Os modificadores utilizados foram o Biostrength 150, o Paraloid e o EGMA, e a argila foi a Brasgel bentonítica. As misturas foram realizadas por meio de fusão. Para avaliar o efeito da modificação no PLA as amostras foram caracterizadas por meio das técnicas de Difração de Raios X (DRX), Espectroscopia na Região do Infravermelho por Transformada de Fourier (FTIR), Ensaios Mecânicos de Tração e Impacto, Microscopia Eletrônica de Varredura (MEV) Análises Térmicas por Calorimetria Exploratória Diferencial (DSC), Termogravimetria (TG) e DinâmicoMecânica (DMTA), Reologia e análise por temperatura de Distorção Térmica (HDT). Os resultados apontaram que as propriedades mecânicas de resistência ao impacto melhoraram significativamente, dependendo do modificador em uso, e também quando houve a combinação com a argila organofílica. No geral as propriedades mecânicas indicam que houve a tenacificação no PLA sem perda expressiva do módulo de elasticidade. As análises morfológicas apontaram uma boa dispersão do material. E as propriedades térmicas não sofreram grandes alterações. Os dados obtidos no ensaio reológico sugerem a formação de uma rede percolada na presença da argila. Concluindo-se por tanto que os modificadores poliméricos atuaram como dissipadores de energia e uso da argila inibiu a coalescência dos modificadores em meio a matriz polimérica, atuando de fato como uma barreira. / The increasing search for alternative materials that bring less damage to the environment resulted in the development of biodegradable polymers. These materials, from the viewpoint of obtaining processing, show a reduction in the energy consumption and the lack of inertia in its degradation imply the reduction of plastic waste accumulation in the environment. However, some of these polymers such as poly (lactic acid) - PLA, for example, have some limitations on their application, being a polymer of high rigidity and brittleness. In order to expand the commercial use of PLA, some research is being done with the aim of improving these properties. On this basis, the current doctoral work aimed to study the effect of polymeric modifiers and organoclay in PLA properties in order to obtain greater insight into this new type of material. For this work occurred in two stages: the first were used three different polymeric modifiers, each was used individually with the PLA in proportion 90/10 (PLA / Modifier); the second, for each PLA / modifier system was added 3 phr of the content (parts per hundred resin) of organophilic clay. The modifiers used were Biostrength 150, the Paraloid and E-GMA, and bentonite clay was the Brasgel. The mixtures were made by way of merger. To evaluate the effect of change in PLA samples were characterized by the techniques of X-ray Diffraction (XRD), Infrared Spectroscopy in the Region Fourier Transform (FTIR), Traction Mechanical Testing and Impact, Scanning Electron Microscopy (SEM) Thermal Analysis by Differential Scanning Calorimetry (DSC), thermogravimetry (TG) and Dynamic-Mechanical (DMTA), Rheology and analysis Temperature Heat Distortion (HDT). The results showed that the mechanical properties of impact resistance improved significantly with the use of polymeric modifiers and also when it was the combination with the organoclay. Overall mechanical properties indicate that there was no significant toughening the PLA loss modulus. Morphological analysis showed a good dispersion of the material. And the thermal properties did not change much. Rheological data obtained in testing suggest the formation of a percolating network in the presence of the clay. In conclusion therefore is that polymeric modifiers acted as energy sinks and use of the clay modifiers inhibit coalescence of the polymer matrix in the middle, in fact acting as a barrier.
|
858 |
Electrochemical impedance modelling of the reactivities of dendrimeric poly(propylene imine) DNA nanobiosensorsArotiba, Omotayo Ademola January 2008 (has links)
Philosophiae Doctor - PhD / In this thesis, I present the electrochemical studies of three dendrimeric polypropylene imine (PPI) nanomaterials and their applications as a platform in the development of a novel label free DNA nanobiosensor based on electrochemical impedance spectroscopy. Cyclic voltammetry (CV), differentia pulse voltammetry (DPV), square wave voltammetry (SWV) and electrochemical impedance spectroscopy (EIS) techniques were used to study and model the electrochemical reactivities of the nanomaterials on glassy carbon electrode (GCE) as the working electrode. / South Africa
|
859 |
Studium mechanismů působících při nádorové imunoterapii založené na instalaci ligandů fagocytárních receptorů na povrch nádorových buněkSVÁČKOVÁ, Denisa January 2016 (has links)
The aim of thesis was to study murine melanoma B16- F10 therapy based on the use of TLR agonists combinedwith activation of phagocytosis. Mechanisms of this therapy were studied on the bases of analysis of tumor infiltrating immune cells and evaluationof thein effect on tumor cells.
|
860 |
Evaluation of Non-functionalized Single Walled Carbon Nanotubes Composites for Bone Tissue EngineeringGupta, Ashim 01 May 2014 (has links)
Introduction: Bone defects and non-unions caused by trauma, tumor resection, pathological degeneration, or congenital deformity pose a great challenge in the field of orthopedics. Traditionally, these defects have been repaired by using autografts and allografts. Autografts have set the gold standard for clinical bone repair because of their osteoconductivity, osteoinductivity and osteogenicity. Nevertheless, the application of autografts is limited because of donor availability and donor site morbidity. Allografts have the advantage that the tissues are readily available and can be easily applied, especially when large segments of bone are to be reconstructed. However, their use is also limited by the risk of disease transfer and immune rejection. To circumvent these limitations tissue engineering has evolved as a means to develop viable bone grafts. An ideal bone graft should be both osteoconductive and osteoinductive, biomechanically strong, minimally antigenic, and eliminates donor site morbidity and quantity issues. The biodegradable polymer, Poly lactic-co-glycolic acid (PLAGA) was chosen because of its commercial availability, biocompatibility, non-immunogenicity, controlled degradation rate, and its ability to promote optimal cell growth. To improve the mechanical properties of PLAGA, Single Walled Carbon Nanotubes (SWCNT) were used as a reinforcing material to fabricate composite scaffolds. The overall goal of this project is to develop a Single Walled Carbon Nanotube composite (SWCNT/PLAGA) for bone regeneration and to examine the interaction of MC3T3-E1 cells (mouse fibroblasts) and hBMSCs (human bone marrow derived stem cells) with the SWCNT/PLAGA composite via focusing on extracellular matrix production and mineralization; and to evaluate its toxicity and bio-compatibility in-vivo in a rat subcutaneous implant model. We hypothesize that reinforcement of PLAGA with SWCNT to fabricate SWCNT/PLAGA composites increases both the mechanical strength of the composites as well as the cell proliferation rate on the surface of the composites while expressing osteoblasts phenotypic, differentiation and mineralization markers; and SWCNT/PLAGA composites are biocompatible and non-toxic, and are ideal candidates for bone tissue engineering. Methods: PLAGA and SWCNT/PLAGA composites were fabricated with various amounts of SWCNT (5, 10, 20, 40 and 100mg), characterized and degradation studies were performed. PLAGA (poly lactic-co-glycolic acid) and SWCNT/PLAGA microspheres and composites were fabricated; characterized and mechanical testing was performed. Cells were seeded and cell adhesion/morphology, growth/survival, proliferation and gene expression analysis were performed to evaluate biocompatibility. Sprague-Dawley rats were implanted subcutaneously with Sham, poly lactic-co-glycolic acid (PLAGA) and SWCNT/PLAGA composites, and sacrificed at 2, 4, 8 and 12 week post-implantation. The animals were observed for signs of morbidity, overt toxicity, weight gain, food consumption, hematological and urinalysis parameters, and histopathology. Results: Imaging studies demonstrated uniform incorporation of SWCNT into the PLAGA matrix and addition of SWCNT did not affect the degradation rate. Composites with 10mg SWCNT resulted in highest rate of cell proliferation (p<0.05) among all composites. Imaging studies demonstrated microspheres with uniform shape and smooth surfaces, and uniform incorporation of SWCNT into PLAGA matrix. The microspheres bonded in a random packing manner while maintaining spacing, thus resembling trabeculae of cancellous bone. Addition of 10mg SWCNT led to greater compressive modulus and ultimate compressive strength. Imaging studies revealed that MC3T3-E1 cells adhered, grew/survived, and exhibited normal, non-stressed morphology on the composites. SWCNT/PLAGA composites exhibited higher cell proliferation rate and gene expression compared to PLAGA. No mortality and clinical signs were observed. All the groups showed consistent weight gain and rate-of-gain for each group was similar. All the groups exhibited similar pattern for food consumption. No difference in urinalysis parameters, hematological parameters; and absolute and relative organ weight was observed. A mild to moderate summary toxicity (sumtox) score was observed for animals treated with the PLAGA and SWCNT/PLAGA whereas the sham animals did not show any response. At all the time intervals both PLAGA and SWCNT/PLAGA showed a significantly higher sumtox score compared to the Sham group. However, there was no significant difference between PLAGA and SWCNT/PLAGA groups. Conclusion: Our SWCNT/PLAGA composites, which possess high mechanical strength and mimic the microstructure of human trabecular bone, displayed tissue compatibility similar to PLAGA, a well known biocompatible polymer over the 12 week study. Thus, the results obtained demonstrate the potential of SWCNT/PLAGA composites for application in BTE and musculoskeletal regeneration. Future studies will be designed to evaluate the efficacy of SWCNT/PLAGA composites in bone regeneration in a non-union ulnar bone defect rabbit model. As interest in carbon nanotube technology increases, studies must be performed to fully evaluate these novel materials at a nonclinical level to assess their safety. The ability to produce composites capable of promoting bone growth will have a significant impact on tissue regeneration and will allow greater functional recovery in injured patients.
|
Page generated in 0.0361 seconds