641 |
Distance-based formulations for the position analysis of kinematic chainsRojas, Nicolàs 20 June 2012 (has links)
This thesis addresses the kinematic analysis of mechanisms, in particular, the position
analysis of kinematic chains, or linkages, that is, mechanisms with rigid bodies (links)
interconnected by kinematic pairs (joints). This problem, of completely geometrical
nature, consists in finding the feasible assembly modes that a kinematic chain can adopt.
An assembly mode is a possible relative transformation between the links of a kinematic
chain. When an assignment of positions and orientations is made for all links with
respect to a given reference frame, an assembly mode is called a configuration. The
methods reported in the literature for solving the position analysis of kinematic chains
can be classified as graphical, analytical, or numerical.
The graphical approaches are mostly geometrical and designed to solve particular
problems. The analytical and numerical methods deal, in general, with kinematic chains
of any topology and translate the original geometric problem into a system of kinematic analysis of all the Assur kinematic chains resulting from replacing some of its revolute
joints by slider joints. Thus, it is concluded that the polynomials of all fully-parallel
planar robots can be derived directly from that of the widely known 3-RPR robot. In
addition to these results, this thesis also presents an efficient procedure, based on distance
and oriented area constraints, and geometrical arguments, to trace coupler curves
of pin-jointed Gr¨ubler kinematic chains. All these techniques and results together are
contributions to theoretical kinematics of mechanisms, robot kinematics, and distance
plane geometry.
equations that defines the location of each link based, mainly, on independent loop
equations. In the analytical approaches, the system of kinematic equations is reduced
to a polynomial, known as the characteristic polynomial of the linkage, using different
elimination methods —e.g., Gr¨obner bases or resultant techniques. In the numerical
approaches, the system of kinematic equations is solved using, for instance, polynomial
continuation or interval-based procedures.
In any case, the use of independent loop equations to solve the position analysis
of kinematic chains, almost a standard in kinematics of mechanisms, has seldom been
questioned despite the resulting system of kinematic equations becomes quite involved
even for simple linkages. Moreover, stating the position analysis of kinematic chains
directly in terms of poses, with or without using independent loop equations, introduces
two major disadvantages: arbitrary reference frames has to be included, and all formulas
involve translations and rotations simultaneously. This thesis departs from this standard
approach by, instead of directly computing Cartesian locations, expressing the original
position problem as a system of distance-based constraints that are then solved using
analytical and numerical procedures adapted to their particularities.
In favor of developing the basics and theory of the proposed approach, this thesis
focuses on the study of the most fundamental planar kinematic chains, namely, Baranov
trusses, Assur kinematic chains, and pin-jointed Gr¨ubler kinematic chains. The results
obtained have shown that the novel developed techniques are promising tools for the
position analysis of kinematic chains and related problems. For example, using these
techniques, the characteristic polynomials of most of the cataloged Baranov trusses can
be obtained without relying on variable eliminations or trigonometric substitutions and
using no other tools than elementary algebra. An outcome in clear contrast with the
complex variable eliminations require when independent loop equations are used to tackle
the problem.
The impact of the above result is actually greater because it is shown that the
characteristic polynomial of a Baranov truss, derived using the proposed distance-based
techniques, contains all the necessary and sufficient information for solving the position / Esta tesis aborda el problema de análisis de posición de cadenas cinemáticas, mecanismos con cuerpos rígidos (enlaces)
interconectados por pares cinemáticos (articulaciones). Este problema, de naturaleza geométrica, consiste en encontrar los
modos de ensamblaje factibles que una cadena cinemática puede adoptar. Un modo de ensamblaje es una transformación
relativa posible entre los enlaces de una cadena cinemática. Los métodos reportados en la literatura para la solución del análisis
de posición de cadenas cinemáticas se pueden clasificar como gráficos, analíticos o numéricos.
Los enfoques gráficos son geométricos y se diseñan para resolver problemas particulares. Los métodos analíticos y numéricos
tratan con cadenas cinemáticas de cualquier topología y traducen el problema geométrico original en un sistema de ecuaciones
cinemáticas que define la ubicación de cada enlace, basado generalmente en ecuaciones de bucle independientes. En los
enfoques analíticos, el sistema de ecuaciones cinemáticas se reduce a un polinomio, conocido como el polinomio característico
de la cadena cinemática, utilizando diferentes métodos de eliminación. En los métodos numéricos, el sistema se resuelve
utilizando, por ejemplo, la continuación polinomial o procedimientos basados en intervalos.
En cualquier caso, el uso de ecuaciones de bucle independientes, un estándar en cinemática de mecanismos, rara vez ha sido
cuestionado a pesar de que el sistema resultante de ecuaciones es bastante complicado, incluso para cadenas simples. Por otra
parte, establecer el análisis de la posición de cadenas cinemáticas directamente en términos de poses, con o sin el uso de
ecuaciones de bucle independientes, presenta dos inconvenientes: sistemas de referencia arbitrarios deben ser introducidos, y
todas las fórmulas implican traslaciones y rotaciones de forma simultánea. Esta tesis se aparta de este enfoque estándar
expresando el problema de posición original como un sistema de restricciones basadas en distancias, en lugar de directamente
calcular posiciones cartesianas. Estas restricciones son posteriormente resueltas con procedimientos analíticos y numéricos
adaptados a sus particularidades.
Con el propósito de desarrollar los conceptos básicos y la teoría del enfoque propuesto, esta tesis se centra en el estudio de las
cadenas cinemáticas planas más fundamentales, a saber, estructuras de Baranov, cadenas cinemáticas de Assur, y cadenas
cinemáticas de Grübler. Los resultados obtenidos han demostrado que las técnicas desarrolladas son herramientas
prometedoras para el análisis de posición de cadenas cinemáticas y problemas relacionados. Por ejemplo, usando dichas
técnicas, los polinomios característicos de la mayoría de las estructuras de Baranov catalogadas se puede obtener sin realizar
eliminaciones de variables o sustituciones trigonométricas, y utilizando solo álgebra elemental. Un resultado en claro contraste
con las complejas eliminaciones de variables que se requieren cuando se utilizan ecuaciones de bucle independientes.
El impacto del resultado anterior es mayor porque se demuestra que el polinomio característico de una estructura de Baranov,
derivado con las técnicas propuestas, contiene toda la información necesaria y suficiente para resolver el análisis de posición de
las cadenas cinemáticas de Assur que resultan de la sustitución de algunas de sus articulaciones de revolución por
articulaciones prismáticas. De esta forma, se concluye que los polinomios de todos los robots planares totalmente paralelos se
pueden derivar directamente del polinomio característico del conocido robot 3-RPR. Adicionalmente, se presenta un
procedimiento eficaz, basado en restricciones de distancias y áreas orientadas, y argumentos geométricos, para trazar curvas
de acoplador de cadenas cinemáticas de Grübler. En conjunto, todas estas técnicas y resultados constituyen contribuciones a la
cinemática teórica de mecanismos, la cinemática de robots, y la geometría plana de distancias.
Barcelona 13-
|
642 |
Fully Computable Convergence Analysis Of Discontinous Galerkin Finite Element Approximation With An Arbitrary Number Of Levels Of Hanging NodesOzisik, Sevtap 01 May 2012 (has links) (PDF)
In this thesis, we analyze an adaptive discontinuous finite element method for symmetric
second order linear elliptic operators. Moreover, we obtain a fully computable convergence
analysis on the broken energy seminorm in first order symmetric interior penalty discontin-
uous Galerkin finite element approximations of this problem. The method is formulated on
nonconforming meshes made of triangular elements with first order polynomial in two di-
mension. We use an estimator which is completely free of unknown constants and provide a
guaranteed numerical bound on the broken energy norm of the error. This estimator is also
shown to provide a lower bound for the broken energy seminorm of the error up to a constant
and higher order data oscillation terms. Consequently, the estimator yields fully reliable,
quantitative error control along with efficiency.
As a second problem, explicit expression for constants of the inverse inequality are given in
1D, 2D and 3D. Increasing mathematical analysis of finite element methods is motivating the
inclusion of mesh dependent terms in new classes of methods for a variety of applications.
Several inequalities of functional analysis are often employed in convergence proofs. Inverse
estimates have been used extensively in the analysis of finite element methods. It is char-
acterized as tools for the error analysis and practical design of finite element methods with
terms that depend on the mesh parameter. Sharp estimates of the constants of this inequality
is provided in this thesis.
|
643 |
Comparison of polynomial profiles and input shaping for industrial applicationsPridgen, Brice 05 April 2011 (has links)
Command shaping creates reference commands that reduce residual vibrations in a flexible system. This thesis examines the use of command shaping for flexible system control in three industrial applications: cam-follower systems, sloshing liquids, and cherrypickers. One common type of command shaping is command smoothing which creates a smooth transition between setpoints. A specific type of command smoothing used in cam-follower systems is the polynomial profile. An alternative technique to reduce vibration in flexible systems is input shaping. In this thesis, input-shaped commands are compared to polynomial profiles for applications requiring both vibration suppression and fast motion. Simulation and experimental results show that input shaping is faster than polynomial profiles and provides a simple approach to suppressing residual vibration.
Secondly, significant experimental contributions have been made in the area of slosh control. The oscillation of liquids in a container can cause liquid spillage or can cause stability issues, especially in space vehicles. In the past, a number of control techniques have been proposed, but only a few recommend the use of input shaping. This thesis describes the use of command shaping to limit slosh. Results are supported by numerical and experimental testing. Input-shaped commands reduce residual slosh amplitude compared to unshaped commands and polynomial profiles. Input-shaped commands can also accommodate uncertainties and changes in the sloshing frequencies.
Lastly, a small-scale cherrypicker was constructed to study the use of input-shaping control on these types of aerial lifts. Cherrypickers have flexible dynamic effects that can cause dangerous and life-threatening situations. To study this class of machines and to provide future students an experimental testbed, several design criteria were established before construction began. The resulting machine achieved most design objectives, including a simple-to-use graphical user interface and accurate state measurements. Robust input-shaping controllers were implemented to limit endpoint vibration. The design of the cherrypicker is discussed and experimental results are reported.
|
644 |
A coarse-mesh transport method for time-dependent reactor problemsPounders, Justin Michael 06 April 2010 (has links)
A new solution technique is derived for the time-dependent transport equation.
This approach extends the steady-state coarse-mesh transport method that is based on
global-local decompositions of large (i.e. full-core) neutron transport problems. The new
method is based on polynomial expansions of the space, angle and time variables in a
response-based formulation of the transport equation. The local problem (coarse mesh)
solutions, which are entirely decoupled from each other, are characterized by space-,
angle- and time-dependent response functions. These response functions are, in turn, used
to couple an arbitrary sequence of local problems to form the solution of a much larger
global problem. In the current work, the local problem (response function) computations
are performed using the Monte Carlo method, while the global (coupling) problem is
solved deterministically. The spatial coupling is performed by orthogonal polynomial
expansions of the partial currents on the local problem surfaces, and similarly, the timedependent
response of the system (i.e. the time-varying flux) is computed by convolving
the time-dependent surface partial currents and time-dependent volumetric sources
against pre-computed time-dependent response kernels.
|
645 |
Simulation of Weakly Correlated Functions and its Application to Random Surfaces and Random PolynomialsFellenberg, Benno, Scheidt, Jürgen vom, Richter, Matthias 30 October 1998 (has links) (PDF)
The paper is dedicated to the modeling and the
simulation of random processes and fields.
Using the concept and the theory of weakly
correlated functions a consistent representation
of sufficiently smooth random processes
will be derived. Special applications will be
given with respect to the simulation of road
surfaces in vehicle dynamics and to the
confirmation of theoretical results with
respect to the zeros of random polynomials.
|
646 |
A finite family of q-orthogonal polynomials and resultants of Chebyshev polynomialsGishe, Jemal Emina 01 June 2006 (has links)
Two problems related to orthogonal polynomials and special functions are considered. For q greater than 1 it is known that continuous q-Jacobi polynomials are orthogonal on the imaginary axis. The first problem is to find proper normalization to form a system of polynomials that are orthogonal on the real line. By introducing a degree reducing operator and a scalar product one can show that the normalized continuous q-Jacobi polynomials satisfies an eigenvalue equation. This implies orthogonality of the normalized continuous q-Jacobi polynomials. As a byproduct, different results related to the normalized system of polynomials, such as its closed form,three-term recurrence relation, eigenvalue equation, Rodrigues formula and generating function will be computed. A discriminant related to the normalized system is also obtained. The second problem is related to recent results of Dilcher and Stolarky on resultants of Chebyshev polynomials. They used algebraic methods to evaluate the resultant of two combinations of Chebyshev polynomials of the second kind. This work provides an alternative method of computing the same resultant and also enables one to compute resultants of more general combinations of Chebyshev polynomials of the second kind. Resultants related to combinations of Chebyshev polynomials of the first kind are also considered.
|
647 |
Συνεχή κλάσματα και ορθογώνια πολυώνυμα / Continued fractions and orthogonal polynomialsΚολοβός, Κυριάκος 17 May 2007 (has links)
Συνδέουμε τα Συνεχή Κλάσματα με τα Ορθογώνια Πολυώνυμα. Ξεκινώντας από τον Stieltjes και το ομώνυμο "Πρόβλημα Ροπών", φτάνουμε μέχρι τις μέρες μας μελετώντας αυτή τη σχέση με μεθόδους Συναρτησιακής Ανάλυσης. / We study the connection between Continued Fractions and Orthogonal Polynomials. We start from Stieltjes and his "Moment Problem". Then we present Chain sequences, methods of Functional Analysis and the Birth-Death processes.
|
648 |
Fast, exact and stable reconstruction of multivariate algebraic polynomials in Chebyshev formPotts, Daniel, Volkmer, Toni 16 February 2015 (has links) (PDF)
We describe a fast method for the evaluation of an arbitrary high-dimensional multivariate algebraic polynomial in Chebyshev form at the nodes of an arbitrary rank-1 Chebyshev lattice. Our main focus is on conditions on rank-1 Chebyshev lattices allowing for the exact reconstruction of such polynomials from samples along such lattices and we present an algorithm for constructing suitable rank-1 Chebyshev lattices based on a component-by-component approach. Moreover, we give a method for the fast, exact and stable reconstruction.
|
649 |
Studies On The Perturbation Problems In Quantum MechanicsKoca, Burcu 01 April 2004 (has links) (PDF)
In this thesis, the main perturbation problems encountered in quantum mechanics have been studied.Since the special functions and orthogonal polynomials
appear very extensively in such problems, we emphasize on those topics as well. In
this context, the classical quantum mechanical anharmonic oscillators described
mathematically by the one-dimensional Schr¨ / odinger equation have been treated
perturbatively in both finite and infinite intervals, corresponding to confined and
non-confined systems, respectively.
|
650 |
有限体上的排列多項式之判斷準則的各種證明方法 / Various Proofs of PP's Criteria over Finite Fields解創智, Hsieh, Chuang-Chih Unknown Date (has links)
In this paper, we provide a complete survey of the important criteria for permutation polynomials over finite fields, including the classical Hermite-Dickson's Criterion and the recent Wan-Turnwald's Criterion. We review the various proofs of these criteria and give new proofs of them.
|
Page generated in 0.0272 seconds