811 |
A Generalization of a Theorem of Boyd and LawtonIssa, Zahraa 08 1900 (has links)
Ce mémoire s’applique à étudier d’abord, dans la première partie, la mesure de Mahler des polynômes à une seule variable. Il commence en donnant des définitions et quelques résultats pertinents pour le calcul de telle hauteur.
Il aborde aussi le sujet de la question de Lehmer, la conjecture la plus célèbre dans le domaine, donne quelques exemples et résultats ayant pour but de résoudre la question.
Ensuite, il y a l’extension de la mesure de Mahler sur les polynômes à plusieurs variables, une démarche semblable au premier cas de la mesure de Mahler, et le sujet des points limites avec quelques exemples.
Dans la seconde partie, on commence par donner des définitions concernant un ordre supérieur de la mesure de Mahler, et des généralisations en passant des polynômes simples aux polynômes à plusieurs variables.
La question de Lehmer existe aussi dans le domaine de la mesure de Mahler supérieure, mais avec des réponses totalement différentes.
À la fin, on arrive à notre objectif, qui sera la démonstration de la généralisation d’un théorème de Boyd-Lawton, ce dernier met en évidence une relation entre la mesure de Mahler des polynômes à plusieurs variables avec la limite de la mesure de Mahler des polynômes à une seule variable.
Ce résultat a des conséquences en termes de la conjecture de Lehmer et sert à clarifier la relation entre les valeurs de la mesure de Mahler des polynômes à une variable et celles des polynômes à plusieurs variables, qui, en effet, sont très différentes en nature. / This thesis applies to study first, in part 1, the Mahler measure of polynomials in one variable. It starts by giving some definitions and results that are important for calculating this height.
It also addresses the topic of Lehmer’s question, an interesting conjecture in the field, and it gives some examples and results aimed at resolving the issue.
The extension of the Mahler measure to several variable polynomials is then considered including the subject of limit points with some examples.
In the second part, we first give definitions of a higher order for the Mahler measure, and generalize from single variable polynomials to multivariable polynomials.
Lehmer’s question has a counterpart in the area of the higher Mahler measure, but with totally different answers.
At the end, we reach our goal, where we will demonstrate the generalization of a theorem of Boyd-Lawton. This theorem shows a relation between the limit of Mahler measure of multivariable polynomials with Mahler measure of polynomials in one variable.
This result has implications in terms of Lehmer's conjecture and serves to clarify the relationship between the Mahler measure of one variable polynomials, and the Mahler measure of multivariable polynomials, which are very different.
|
812 |
High accuracy computational methods for the semiclassical Schrödinger equationSingh, Pranav January 2018 (has links)
The computation of Schrödinger equations in the semiclassical regime presents several enduring challenges due to the presence of the small semiclassical parameter. Standard approaches for solving these equations commence with spatial discretisation followed by exponentiation of the discretised Hamiltonian via exponential splittings. In this thesis we follow an alternative strategy${-}$we develop a new technique, called the symmetric Zassenhaus splitting procedure, which involves directly splitting the exponential of the undiscretised Hamiltonian. This technique allows us to design methods that are highly efficient in the semiclassical regime. Our analysis takes place in the Lie algebra generated by multiplicative operators and polynomials of the differential operator. This Lie algebra is completely characterised by Jordan polynomials in the differential operator, which constitute naturally symmetrised differential operators. Combined with the $\mathbb{Z}_2$-graded structure of this Lie algebra, the symmetry results in skew-Hermiticity of the exponents for Zassenhaus-style splittings, resulting in unitary evolution and numerical stability. The properties of commutator simplification and height reduction in these Lie algebras result in a highly effective form of $\textit{asymptotic splitting:} $exponential splittings where consecutive terms are scaled by increasing powers of the small semiclassical parameter. This leads to high accuracy methods whose costs grow quadratically with higher orders of accuracy. Time-dependent potentials are tackled by developing commutator-free Magnus expansions in our Lie algebra, which are subsequently split using the Zassenhaus algorithm. We present two approaches for developing arbitrarily high-order Magnus--Zassenhaus schemes${-}$one where the integrals are discretised using Gauss--Legendre quadrature at the outset and another where integrals are preserved throughout. These schemes feature high accuracy, allow large time steps, and the quadratic growth of their costs is found to be superior to traditional approaches such as Magnus--Lanczos methods and Yoshida splittings based on traditional Magnus expansions that feature nested commutators of matrices. An analysis of these operatorial splittings and expansions is carried out by characterising the highly oscillatory behaviour of the solution.
|
813 |
Sobre o teoremas de Bohnenblurt - HilleAlarcón, Daniel Núnez 12 March 2014 (has links)
Submitted by Maike Costa (maiksebas@gmail.com) on 2016-03-29T11:06:09Z
No. of bitstreams: 1
arquivo total.pdf: 821623 bytes, checksum: 520d1fa102a8bdfeb531d12a30d60f61 (MD5) / Made available in DSpace on 2016-03-29T11:06:09Z (GMT). No. of bitstreams: 1
arquivo total.pdf: 821623 bytes, checksum: 520d1fa102a8bdfeb531d12a30d60f61 (MD5)
Previous issue date: 2014-03-12 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / Os teoremas de Bohnenblust Hille, demonstrados em 1931 no prestigioso jornal Annals of Mathematics, foram utilizados como ferramentas muito úteis na solução do famoso Problema da convergência absoluta de Bohr. Após um longo tempo esquecidos,
estes teoremas têm sido bastante explorados nos últimos anos. Este último quinquê-
nio experimentou o surgimento de várias obras dedicadas a estimar as constantes de
Bohnenblust Hille ([13, 18, 20, 26, 27, 39, 42, 44, 46, 53]) e também conexões inesperadas
com a Teoria da Informação Quântica apareceram (ver, por exemplo, [38]). Há,
de fato, quatro casos para serem investigados: polinomial (casos real e complexo) e
multilinear (casos real e complexo). Podemos resumir em uma frase as principais informa
ções dos trabalhos recentes: as constantes das desigualdades de Bohnenblust Hille
são, em geral, extraordinariamente menores do que as primeiras estimativas tinham
previsto. Neste trabalho apresentamos algumas das nossas pequenas contribuições ao
estudo das constantes nas desigualdades de Bohnenblust-Hille, os quais encontram-se
contidos em ([40, 41, 42, 44]).The Bohnenblust Hille theorems, proved in 1931 in the prestigious journal Annals of
Mathematics, were used as very useful tools in the solution of the famous "Bohr's
absolute convergence problem". After a long time overlooked, these theorems have
been explored in the recent years. Last quinquennium experienced the rising of several
works dedicated to estimate the Bohnenblust Hille constants ([13, 18, 20, 26, 27, 39,
42, 44, 46, 53]) and also unexpected connections with Quantum Information Theory
appeared (see, e.g., [38]). There are in fact four cases to be investigated: polynomial
(real and complex cases) and multilinear (real and complex cases). We can summarize
in a sentence the main information from the recent preprints: the Bohnenblust Hille
constants are, in general, extraordinarily smaller than the rst estimates predicted. In
this work, we present some of our small contributions to the study of the constants of
the inequalities Bohnenblust-Hille, these are contained in ([40, 41, 42, 44]). / Os teoremas de Bohnenblust Hille, demonstrados em 1931 no prestigioso jornal Annals
of Mathematics, foram utilizados como ferramentas muito úteis na solução do
famoso Problema da convergência absoluta de Bohr. Após um longo tempo esquecidos,
estes teoremas têm sido bastante explorados nos últimos anos. Este último quinquê-
nio experimentou o surgimento de várias obras dedicadas a estimar as constantes de
Bohnenblust Hille ([13, 18, 20, 26, 27, 39, 42, 44, 46, 53]) e também conexões inesperadas
com a Teoria da Informação Quântica apareceram (ver, por exemplo, [38]). Há,
de fato, quatro casos para serem investigados: polinomial (casos real e complexo) e
multilinear (casos real e complexo). Podemos resumir em uma frase as principais informa
ções dos trabalhos recentes: as constantes das desigualdades de Bohnenblust Hille
são, em geral, extraordinariamente menores do que as primeiras estimativas tinham
previsto. Neste trabalho apresentamos algumas das nossas pequenas contribuições ao
estudo das constantes nas desigualdades de Bohnenblust-Hille, os quais encontram-se
contidos em ([40, 41, 42, 44])
|
814 |
Uma versão generalizada do Teorema de Extrapolação para operadores não-lineares absolutamente somantesSantos, Lisiane Rezende dos 03 March 2016 (has links)
Submitted by ANA KARLA PEREIRA RODRIGUES (anakarla_@hotmail.com) on 2017-08-22T16:24:35Z
No. of bitstreams: 1
arquivototal.pdf: 1096557 bytes, checksum: 096bafe0cd5d1cf118a6fa1546070e5d (MD5) / Made available in DSpace on 2017-08-22T16:24:35Z (GMT). No. of bitstreams: 1
arquivototal.pdf: 1096557 bytes, checksum: 096bafe0cd5d1cf118a6fa1546070e5d (MD5)
Previous issue date: 2016-03-03 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In this work we study a recent general version of the Extrapolation Theorem, due to
Botelho, Pellegrino, Santos and Seoane-Sep ulveda [6] that improves and uni es a number
of known Extrapolation-type theorems for classes of mappings that generalize the ideal of
absolutely p-summing linear operators. / Neste trabalho, dissertamos sobre uma recente vers~ao geral do Teorema de Extrapola c~ao,
devida a Botelho, Pellegrino, Santos e Seoane-Sep ulveda [6], que melhora e uni ca v arios
teoremas do tipo Extrapola c~ao para certas classes de fun c~oes que generalizam o ideal dos
operadores lineares absolutamente p-somantes.
|
815 |
Zeros de séries de Dirichlet e de funções na classe de Laguerre-Pólya / Zeros of Dirichlet series and of functions in the Laguerre-Pólya classOliveira, Willian Diego [UNESP] 11 May 2017 (has links)
Submitted by WILLIAN DIEGO OLIVEIRA null (willian@ibilce.unesp.br) on 2017-09-18T03:59:17Z
No. of bitstreams: 1
Tese Final.pdf: 21063949 bytes, checksum: 766c3ca9aab9ca1a33dd27bf06043b1d (MD5) / Approved for entry into archive by Monique Sasaki (sayumi_sasaki@hotmail.com) on 2017-09-19T19:05:58Z (GMT) No. of bitstreams: 1
oliveira_wd_dr_sjrp.pdf: 21063949 bytes, checksum: 766c3ca9aab9ca1a33dd27bf06043b1d (MD5) / Made available in DSpace on 2017-09-19T19:05:58Z (GMT). No. of bitstreams: 1
oliveira_wd_dr_sjrp.pdf: 21063949 bytes, checksum: 766c3ca9aab9ca1a33dd27bf06043b1d (MD5)
Previous issue date: 2017-05-11 / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / Estudamos tópicos relacionados a zeros de séries de Dirichlet e de funções inteiras. Boa parte da tese é voltada à localização de zeros de séries de Dirichlet via critérios de densidade. Estabelecemos o critério de Nyman-Beurling para uma ampla classe de séries de Dirichlet e o critério de Báez-Duarte para L-funções de Dirichlet em semi-planos R(s)>1/2, para p ∈ (1,2], bem como para polinômios de Dirichlet em qualquer semi-plano R(s)>r. Um análogo de uma cota inferior de Burnol relativa ao critério de Báez-Duarte foi estabelecido para polinômios de Dirichlet. Uma das ferramentas principais na prova deste último resultado é a solução de um problema extremo natural para polinômios de Dirichlet inspirado no resultado de Báez-Duarte. Provamos que os sinais dos coeficientes de Maclaurin de uma vasta subclasse de funções inteiras da classe de Laguerre-Pólya possuem um comportamento regular. / We study topics related to zeros of Dirichlet series and entire functions. A large part of the thesis is devoted to the location of zeros of Dirichlet series via density criteria. We establish the Nyman-Beruling criterion for a wide class of Dirichlet series and the Báez-Duarte criterion for Dirichlet L-functions in the semi-plane R(s)>1/p, for p ∈ (1,2], as well as for zeros of Dirichlet polynomials in any semi-plane R(s)>r. An analog for the case of Dirichlet polynomials of a result of Burnol which is closely related to Báez-Duarte’s one is also established. A principal tool in the proof of the latter result is the solution of a natural extremal problem for Dirichlet polynomials inspired by Báez-Duarte’s result. We prove that the signs of the Maclaurin coefficients of a wide class of entire functions that belong to the Laguerre-Pólya class posses a regular behavior. / FAPESP: 2013/14881-9
|
816 |
Ideais algebricos de aplicações multilineares e polinômios homogêneos / Algebraic ideals of multilinear mappings and homogeneous polynomialsMoura, Fernanda Ribeiro de 28 May 2014 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / The main purpose of this dissertation is the study of ideals of multilinear mappings and
homogeneous polynomials between linear spaces. By an ideal we mean a class that is
stable under the composition with linear operators. First we study multilinear mappings
and spaces of multilinear mappings. We also show how to obtain, from a given multilinear
mapping, other multilinear mappings with degrees of multilinearity greater than, equal
to or smaller than the degree of the original multilinear mapping. Next we study homogeneous
polynomials and spaces of homogeneous polynomials, and we also show how
to obtain, from a given n-homogeneous polynomial, other polynomials with degrees of
homogeneity greater than, equal to or smaller than the degree of the original polynomial.
Next we study ideals of multilinear mappings, or multi-ideals, and ideals of homogeneous
polynomial, or polynomial ideals, giving several examples and presenting methods to generated
multi-ideals and polynomial ideals from a given operator ideal. Finally we dene
and give several examples of coherent multi-ideals and coherent polynomial ideals. / O principal objetivo desta dissertação e estudar os ideais de aplicações multilineares e polinômios homogêneos entre espaços vetoriais. Por um ideal entendemos uma classe de aplicações que e estavel atraves da composição com operadores lineares. Primeiramente estudamos as aplicações multilineares e os espaços de aplicações multilineares. Mostramos tambem como obter, a partir de uma aplicação multilinear dada, outras aplicações com graus de multilinearidade maiores, iguais ou menores que o da aplicação original. Em seguida estudamos os polinômios homogêneos e os espacos de polinômios homogêneos,
e mostramos que, a partir de um polinômio n-homogêneo, tambem podemos construir novos polinômios homogêneos com graus de homogeneidade maiores, iguais ou menores que n. Posteriormente estudamos os ideais de aplicações multilineares, ou multi-ideais,
e os ideais de polinômios homogêneos, exibindo varios exemplos e apresentando metodos para se obter um multi-ideais, ou ideais de polinômios, a partir de ideais de operadores lineares dados. Por m, denimos e exibimos varios exemplos de multi-ideais coerentes e
de ideais coerentes de polinômios. / Mestre em Matemática
|
817 |
O GeoGebra : uma experimentação na abordagem da função afimAraújo, Wellington Alves de 31 March 2014 (has links)
This research aims to describe investigate possibilities of learning situations in mathematics concepts related to polynomial functions of the 1st degree ( In order Function ) with students from 1st grade of Technical Education Middle Level Integrated IFS - Campus São Cristóvão making use of a teaching sequence mediated by the use of a dynamic geometry software, Geogebra. To this purpose, a study, based on the ideas of Machado (2008 ), Pais (2011 ) and Oliveira (2013 ), based on the Engineering Curriculum discussed by Artigue (1996 ) with two classes from 1st Series Technical Course Intermediate Level Integrated was conducted Federal Institute of Education, Science and Technology of Sergipe - Campus São Cristóvão / SE, which formed study groups that we call group with the experiment and group without the experiment. At the end of the experiment it was found that the group with the experiment had better results than the group without the experiment. The data indicated that using a dynamic geometry software in a dynamic geometry environment provides a great interaction between the participants constituting a positive factor to learning, since they facilitate the construction of new concepts, provide a comparison between different forms of representation of a function, thereby enabling conditions for the participant to recognize the graphical representation of an polynomial function of the first degree as a straight, expressing the relation between the coefficients of the straight equation with its graphical and algebraic representations. / A presente pesquisa tem como objetivo geral investigar possibilidades de situações de aprendizado da Matemática de conceitos relativos às funções polinomiais do 1º grau (Função Afim) com alunos da 1ª série do Ensino Técnico de Nível Médio Integrado do IFS Campus São Cristóvão fazendo uso de uma Sequência Didática mediada pelo uso de um software de geometria dinâmica, o GeoGebra. Para tanto, foi realizado um estudo, pautado nas ideias de Machado (2008), Pais (2011) e Oliveira (2013), embasados na Engenharia Didática discutida por Artigue (1996) com duas turmas da 1ª Série do curso Técnico de Nível Médio Integrado do Instituto Federal de Educação, Ciência e Tecnologia de Sergipe Campus São Cristóvão/SE, que formaram os grupos de estudo que denominamos de Grupo com o experimento (GCE) e Grupo sem o experimento (GSE). Ao término da experiência ficou constatado que o GCE apresentou melhores resultados do que o GSE. Os dados indicaram que utilizar um software de geometria dinâmica em um ambiente de geometria dinâmica proporciona uma grande interação entre os participantes constituindo um fator positivo ao aprendizado, uma vez que facilitam a construção de novos conceitos, proporcionam a comparação entre as diferentes formas de representação de uma função, possibilitando, assim, condições para o participante de reconhecer a representação gráfica de uma função polinomial do primeiro grau como uma reta, expressar a relação entre os coeficientes da equação da reta com sua representação gráfica e algébrica.
|
818 |
Aplicação do polinômio de Hermite-Caos para a determinação da carga de instabilidade paramétrica de cascas cilíndricas com incerteza nos parâmetros físicos e geométricos / Application of Chaos-Hermite polynomial for determining the load of parametric instability of cylindrical shells witn uncertainty in physical and geometrical parametersBrazão, A. F. 04 April 2014 (has links)
Submitted by Luanna Matias (lua_matias@yahoo.com.br) on 2015-02-04T20:56:59Z
No. of bitstreams: 2
Dissertação - Augusta Finotti Brazão - 2014.pdf: 4325407 bytes, checksum: ed015d93a79ebdcbed577af5e0f9a797 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2015-02-05T09:48:34Z (GMT) No. of bitstreams: 2
Dissertação - Augusta Finotti Brazão - 2014.pdf: 4325407 bytes, checksum: ed015d93a79ebdcbed577af5e0f9a797 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Made available in DSpace on 2015-02-05T09:48:34Z (GMT). No. of bitstreams: 2
Dissertação - Augusta Finotti Brazão - 2014.pdf: 4325407 bytes, checksum: ed015d93a79ebdcbed577af5e0f9a797 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Previous issue date: 2014-04-04 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / The present study aims to investigate the influence of uncertainties in physical and geometric parameters to obtain the load parametric instability of cylindrical shell, using the Galerkin method with the stochastic polynomial Hermite-Caos. The nonlinear equations of motion of the cylindrical shell are deduced from their functional power considering the strain field proposed by Donnell´s nonlinear shallow shell theory. The uncertainties are considered as random parameters with probability density function known in the partial differential equation of motion of the cylindrical shell, which it becomes a stochastic partial differential equation due to the presence of randomness. First, the discretization of the stochastic problem is performed using the stochastic Galerkin method together with polynomial Hermite-Chaos, to transform the stochastic partial differential equation into a set of equivalent deterministic partial differential equations, which take into account the randomness of the system. Then, the discretization of the lateral field displacement is made by a perturbation procedure, indicating the nonlinear vibration modes which couple to the linear vibration mode. The set of partial differential equations is transformed into a deterministic system of equations deterministic ordinary second order in time. Uncertainty is considered in one of its parameters: the Young modulus, thickness and amplitude of initial geometric imperfection. Then we analyze the influence of randomness in two parameters simultaneously: the thickness and the Young modulus. Once obtained the system of ordinary differential equations deterministic containing the randomness of the parameters, the integration over discrete time system is made from the Runge- Kutta fourth order to obtain results as the time response, bifurcation diagrams and
boundaries of instability which are compared with deterministic analysis, indicating that
polynomial Hermite-Chaos is a good numerical tool for predicting the load parametric
instability without the need to perform a process of sampling. / O presente trabalho tem como objetivo investigar a influência de incertezas nos parâmetros
físicos e geométricos para a determinação da carga de instabilidade paramétrica da casca
cilíndrica, utilizando o método de Galerkin Estocástico juntamente com o polinômio de
Hermite-Caos. As equações não-lineares de movimento da casca cilíndrica são deduzidas a
partir de seus funcionais de energia considerando o campo de deformações proposto pela
teoria não linear de Donnell para cascas esbeltas. As incertezas são consideradas como
parâmetros aleatórios com função de densidade de probabilidade conhecida na equação
diferencial parcial de movimento da casca cilíndrica, que passa a ser uma equação diferencial
parcial estocástica devido à presença da aleatoriedade. Primeiramente, faz-se a discretização
do problema estocástico utilizando o método de Galerkin Estocástico juntamente com o
polinômio de Hermite-Caos, para transformar a equação diferencial parcial estocástica em um
conjunto de equações diferenciais parciais determinísticas equivalentes, que levem em
consideração a aleatoriedade do sistema. Em seguida, apresenta-se a discretização do campo
de deslocamentos laterais através do Método da Perturbação, indicando os modos não-lineares
de vibração que se acoplam ao modo linear de vibração, para que o conjunto de equações
diferenciais parciais determinísticas seja transformado em um sistema de equações ordinárias
determinísticas de segunda ordem no tempo. A incerteza é considerada inicialmente em
apenas um de seus parâmetros: no módulo de elasticidade, na espessura e na amplitude da
imperfeição geométrica inicial. Em seguida, analisa-se a influência de aleatoriedades em dois
parâmetros simultaneamente, sendo eles: a espessura e o módulo de elasticidade. Uma vez
obtido o sistema de equações diferenciais ordinárias determinísticas que contêm as aleatoriedades dos parâmetros, a integração ao longo do tempo do sistema discretizado é feita a partir do método de Runge-Kutta de quarta ordem, obtendo-se resultados como resposta no tempo, diagramas de bifurcação e fronteiras de instabilidade, que são comparados com análises determinísticas, indicando que o polinômio de Hermite-Caos é uma boa ferramenta numérica para prever a carga de instabilidade paramétrica sem a necessidade de se realizar um processo de amostragens.
|
819 |
Non-degeneracy of polynomial maps with respect to global Newton polyhedra / Não-degeneração de aplicações polinomiais com respeito à poliedros de Newton globaisJorge Alberto Coripaco Huarcaya 02 July 2015 (has links)
Let F : Kn → Kp be a polynomial map, where K = R or C. Motivated by the characterization of the integral closure of ideals in the ring On by means of analytic inequalities proven by Lejeune-Teissier [46], we define the set Sp(F) of special polynomials with respect to F. The set Sp(F) can be considered as a counterpart, in the context of polynomial maps Kn → Kp, of the notion of integral closure of ideals in the ring of analytic function germs (~⌈+. In this work, we are mainly interested in the determination of the convex region S0(F) formed by the exponents of the special monomials with respect to F. Let us fix a convenient Newton polyhedron ⌈ + ~⊆ Rn. We obtain an approximation to S0</sub (F) when F is strongly adapted to ~⊆ +, which is a condition expressed in terms of the faces of ~⌈+ and the principal parts at infinity of F. The local version of this problem has been studied by Bivià-Ausina [4] and Saia [71]. Our result about the estimation of S0(F) allows us to give a lower estimate for the Lojasiewicz exponent at infinity of a given polynomial map with compact zero set. As a consequence of our study of ojasiewicz exponents at infinity we have also obtained a result about the uniformity of the ojasiewicz exponent in deformations of polynomial maps Kn → Kp. Consequently we derive a result about the invariance of the global index of real polynomial maps Rn → Rn. As particular cases of the condition of F being adapted to ~⌈+ there appears the class of Newton non-degenerate polynomial maps at infinity and pre-weighted homogeneous maps. The first class of maps constitute a natural extension for maps of the Newton non-degeneracy condition introduced by Kouchnirenko for polynomial functions. We characterize the Newton non-degeneracy at infinity condition of a given polynomial map F : Kn → Kp in terms of the set S0((F, 1)), where (F, 1) : Kn → Kp+1 is the polynomial map whose last component function equals 1. Motivated by analogous problems in local algebra we also derive some results concerning the multiplicity of F. / Seja F :Kn → Kp uma aplicação polinomial, onde K = C ou K = R. Motivados pela caracterização do fecho integral de ideais no anel On por meio de desigualdades analíticas provadas por Lejeune-Teissier [46], definimos o conjunto Sp(F) de polinomios especiais com respeito a F. O conjunto Sp(F) pode ser considerado como um homólogo, no contexto das aplicações polinomiais Kn → Kp, da noção de fecho integral de ideais no anel de germes de funções analíticas (Kn 0) → K. Neste trabalho, estamos interessados principalmente na determinação da região convexa S0 (F) formado pelos expoentes dos monômios especiais com respeito a F. Fixado um poliedro de Newton conveniente ~⌈ + ~⊆ Rn, é obtida uma aproximação de S0(F), quando F é fortemente adaptada a ⌈ + o qual é uma condição expressada em termos das faces de ~⌈ + e as partes principais no infinito de F. A versão local deste problema foi estudado por Bivià-Ausina [4] e Saia [71]. Nosso resultado sobre a estimativa de S0(F) nos permite dar uma estimativa inferior para o expoente Lojasiewicz no infinito de uma aplicação polinomial Kn → Kp, com conjunto F-1(0) compacto. Como uma consequência do estudo dos expoentes de Lojasiewicz no infinito também foi obtido um resultado sobre a uniformidade do expoente Lojasiewicz em deformações de aplicações polinomiais Kn → Kp e consequentemente, um resultado sobre a invariância do índice global de aplicações polinomiais reais Rn → Rn. Como casos particulares da condição de F ser adaptada a ~⌈ + aparecem a classe de aplicações polinomiais Newton não degeneradas e as aplicações polinomiais pre-quase homogêneas. A primeira classe de aplicações constitui uma extensão natural da condição Newton não-degeneração introduzida por Kouchnirenko para funções polinomiais. Caracterizamos a condição Newton não-degeneração para uma determinada aplicação polinomial F : Kn → Kp em termos do conjunto S0((F, 1)), onde (F, 1) : Kn → Kp+1 é a aplicação polinomial cuja última função componente é igual a 1. Motivados por problemas análogos em álgebra local, também obtivemos alguns resultados sobre a multiplicidade de F.
|
820 |
Núcleos isotrópicos e positivos definidos sobre espaços 2-homogêneos / Positive definite and isotropic kernels on compact two-point homogeneous spacesRafaela Neves Bonfim 25 July 2017 (has links)
Este trabalho é composto de duas partes distintas, ambas dentro de um mesmo tema: núcleos positivos definidos sobre variedades. Na primeira delas fornecemos uma caracterização para os núcleos contínuos, isotrópicos e positivos definidos a valores matriciais sobre um espaço compacto 2-homogêneo. Utilizando-a, investigamos a positividade definida estrita destes núcleos, apresentando inicialmente algumas condições suficientes para garantir tal propriedade. No caso em que o espaço 2-homogêneo não é uma esfera, descrevemos uma caracterização definitiva para a positividade definida estrita do núcleo. Neste mesmo caso, para núcleos a valores no espaço das matrizes de ordem 2, apresentamos uma caraterização alternativa para a positividade definida estrita do núcleo via os dois elementos na diagonal principal da representação matricial do núcleo. Na segunda parte, nos restringimos a núcleos positivos definidos escalares sobre os mesmos espaços e determinamos condições necessárias e suficientes para a positividade definida estrita de um produto de núcleos positivos definidos sobre um mesmo espaço compacto 2-homogêneo. Apresentamos ainda uma extensão deste resultado para núcleos positivos definidos sobre o produto cartesiano de um grupo localmente compacto com uma esfera de dimensão alta, mantendo-se a isotropia na componente esférica. / In this work we present a characterization for the continuous, isotropic and positive definite matrix-valued kernels on a compact two-point homogeneous space. After that, we consider the strict positive definiteness of the kernels, describing some independent sufficient conditions for that property to hold. In the case the space is not a sphere, one of the conditions becomes necessary and sufficient for the strict positive definiteness of the kernel. Further, for 22- matrix-valued kernels on a compact two-point homogeneous space which is not a sphere, we present a characterization for the strict positive definiteness of the kernels based upon the main diagonal elements in its matrix representation. In the last part of this work, we restrict ourselves to scalar kernels and determine necessary and sufficient conditions in order that the product of two continuous, isotropic and positive definite kernels on a compact two-point homogeneous space be strictly positive definite. We also discuss the extension of this result for kernels defined on a product of a locally compact group and a high dimensional sphere.
|
Page generated in 0.08 seconds