831 |
Non-Hermitian polynomial hybrid Monte CarloWitzel, Oliver 22 September 2008 (has links)
In dieser Dissertation werden algorithmische Verbesserungen und Varianten für Simulationen der zwei-Flavor Gitter QCD mit dynamischen Fermionen studiert. Der O(a)-verbesserte Dirac-Wilson-Operator wird im Schrödinger Funktional mit einem Update des Hybrid Monte Carlo (HMC)-Typs verwendet. Sowohl der Hermitische als auch der nicht-Hermitische Operator werden betrachtet. Für den Hermitischen Dirac-Wilson-Operator untersuchen wir die Vorteile des symmetrischen gegenüber dem asymmetrischen Gerade-Ungerade-Präkonditionierens, wie man von einem mehr Zeitskalen-Integrator profitieren kann, sowie die Auswirkungen der kleinsten Eigenwerte auf die Stabilität des HMC Algorithmus. Im Fall des nicht-Hermitischen Operators leiten wir eine (semi)-analytische Schranke für das Spektrum her und zeigen eine Methode, um Informationen über den spektralen Rand zu gewinnen, indem wir komplexe Eigenwerte mit dem Lanczos-Algorithmus abschätzen. Diese spektralen Ränder erlauben es, Vorzüge des symmetrischen Gerade-Ungerade-Präkonditionierens oder den Effekt des Sheikholeslami-Wohlert-Terms für das Spektrum des nicht-Hermitischen Operators zu zeigen. Unter Verwendung der Informationen des spektralen Randes konstruieren wir angepasste, komplexe, skalierte und verschobene Tschebyschow Polynome zur Approximation des inversen Dirac-Wilson-Operators. Basierend auf diesen Polynomen entwickeln wir eine neue HMC-Variante, genannt nicht-Hermitischer polynomialer Hybrid Monte Carlo (NPHMC). Sie erlaubt, vom Importance Sampling unter Kompensation mit einem Gewichtungsfaktor abzuweichen. Zudem wird eine Erweiterung durch Anwendung des Hasenbusch-Tricks abgeleitet. Erste Größen der Leistungsfähigkeit, die die Abhängingkeit von den Eingabeparametern als auch einen Vergleich mit unserem Standard-HMC zeigen, werden präsentiert. Im Vergleich der beiden ein-Pseudofermion-Varianten ist der neue NPHMC etwas besser; eine eindeutige Aussage im Fall der zwei-Pseudofermion-Variante ist noch nicht möglich. / In this thesis algorithmic improvements and variants for two-flavor lattice QCD simulations with dynamical fermions are studied using the O(a)-improved Dirac-Wilson operator in the Schrödinger functional setup and employing a hybrid Monte Carlo-type (HMC) update. Both, the Hermitian and the Non-Hermitian operator are considered. For the Hermitian Dirac-Wilson operator we investigate the advantages of symmetric over asymmetric even-odd preconditioning, how to gain from multiple time scale integration as well as how the smallest eigenvalues affect the stability of the HMC algorithm. In case of the non-Hermitian operator we first derive (semi-)analytical bounds on the spectrum before demonstrating a method to obtain information on the spectral boundary by estimating complex eigenvalues with the Lanzcos algorithm. These spectral boundaries allow to visualize the advantage of symmetric even-odd preconditioning or the effect of the Sheikholeslami-Wohlert term on the spectrum of the non-Hermitian Dirac-Wilson operator. Taking advantage of the information of the spectral boundary we design best-suited, complex, scaled and translated Chebyshev polynomials to approximate the inverse Dirac-Wilson operator. Based on these polynomials we derive a new HMC variant, named non-Hermitian polynomial Hybrid Monte Carlo (NPHMC), which allows to deviate from importance sampling by compensation with a reweighting factor. Furthermore an extension employing the Hasenbusch-trick is derived. First performance figures showing the dependence on the input parameters as well as a comparison to our standard HMC are given. Comparing both algorithms with one pseudo-fermion, we find the new NPHMC to be slightly superior, whereas a clear statement for the two pseudo-fermion variants is yet not possible.
|
832 |
Applications of parabolic Hecke algebras: parabolic induction and Hecke polynomialsHeyer, Claudius 09 July 2019 (has links)
Im ersten Teil wird eine neue Konstruktion der parabolischen Induktion für pro-p Iwahori-Heckemoduln gegeben. Dabei taucht eine neue Klasse von Algebren auf, die in gewisser Weise als Interpolation zwischen der pro-p Iwahori-Heckealgebra einer p-adischen reduktiven Gruppe $G$ und derjenigen einer Leviuntergruppe $M$ von $G$ gedacht werden kann. Für diese Algebren wird ein Induktionsfunktor definiert und eine Transitivitätseigenschaft bewiesen. Dies liefert einen neuen Beweis für die Transitivität der parabolischen Induktion für Moduln über der pro-p Iwahori-Heckealgebra. Ferner wird eine Funktion auf einer parabolischen Untergruppe untersucht, die als Werte nur p-Potenzen annimmt. Es wird gezeigt, dass sie eine Funktion auf der (pro-p) Iwahori-Weylgruppe von $M$ definiert, und
dass die so definierte Funktion monoton steigend bzgl. der Bruhat-Ordnung ist und einen Vergleich der Längenfunktionen zwischen der Iwahori-Weylgruppe von $M$ und derjenigen der Iwahori-Weylgruppe von $G$ erlaubt.
Im zweiten Teil wird ein allgemeiner Zerlegungssatz für Polynome über der sphärischen (parahorischen) Heckealgebra einer p-adischen reduktiven Gruppe $G$ bewiesen. Diese Zerlegung findet über einer parabolischen Heckealgebra statt, die die Heckealgebra von $G$ enthält. Für den Beweis des Zerlegungssatzes wird vorausgesetzt, dass die gewählte parabolische Untergruppe in einer nichtstumpfen enthalten ist. Des Weiteren werden die nichtstumpfen parabolischen Untergruppen von $G$ klassifiziert. / The first part deals with a new construction of parabolic induction for modules over the pro-p Iwahori-Hecke algebra. This construction exhibits a new class of algebras that can be thought of as an interpolation between the pro-p Iwahori-Hecke algebra of a p-adic reductive group $G$ and the corresponding algebra of a Levi subgroup $M$ of $G$. For these algebras we define a new induction functor and prove a transitivity property. This gives a new proof of
the transitivity of parabolic induction for modules over the pro-p Iwahori-Hecke algebra. Further, a function on a parabolic subgroup with p-power values is studied. We show that it induces a function on the (pro-p) Iwahori-Weyl group of $M$, that it is monotonically increasing with respect to the Bruhat order, and that it allows to compare the length function on the Iwahori-Weyl group of $M$ with the one on the Iwahori-Weyl group of $G$.
In the second part a general decomposition theorem for polynomials over the spherical (parahoric) Hecke algebra of a p-adic reductive group $G$ is proved. The proof requires that the chosen parabolic subgroup is contained in a non-obtuse one. Moreover, we give a classification of non-obtuse parabolic subgroups of $G$.
|
833 |
Multivariate Approximation and High-Dimensional Sparse FFT Based on Rank-1 Lattice Sampling / Multivariate Approximation und hochdimensionale dünnbesetzte schnelle Fouriertransformation basierend auf Rang-1-Gittern als OrtsdiskretisierungenVolkmer, Toni 18 July 2017 (has links) (PDF)
In this work, the fast evaluation and reconstruction of multivariate trigonometric polynomials with frequencies supported on arbitrary index sets of finite cardinality is considered, where rank-1 lattices are used as spatial discretizations. The approximation of multivariate smooth periodic functions by trigonometric polynomials is studied, based on a one-dimensional FFT applied to function samples. The smoothness of the functions is characterized via the decay of their Fourier coefficients, and various estimates for sampling errors are shown, complemented by numerical tests for up to 25 dimensions. In addition, the special case of perturbed rank-1 lattice nodes is considered, and a fast Taylor expansion based approximation method is developed.
One main contribution is the transfer of the methods to the non-periodic case. Multivariate algebraic polynomials in Chebyshev form are used as ansatz functions and rank-1 Chebyshev lattices as spatial discretizations. This strategy allows for using fast algorithms based on a one-dimensional DCT. The smoothness of a function can be characterized via the decay of its Chebyshev coefficients. From this point of view, estimates for sampling errors are shown as well as numerical tests for up to 25 dimensions.
A further main contribution is the development of a high-dimensional sparse FFT method based on rank-1 lattice sampling, which allows for determining unknown frequency locations belonging to the approximately largest Fourier or Chebyshev coefficients of a function. / In dieser Arbeit wird die schnelle Auswertung und Rekonstruktion multivariater trigonometrischer Polynome mit Frequenzen aus beliebigen Indexmengen endlicher Kardinalität betrachtet, wobei Rang-1-Gitter (rank-1 lattices) als Diskretisierung im Ortsbereich verwendet werden. Die Approximation multivariater glatter periodischer Funktionen durch trigonometrische Polynome wird untersucht, wobei Approximanten mittels einer eindimensionalen FFT (schnellen Fourier-Transformation) angewandt auf Funktionswerte ermittelt werden. Die Glattheit von Funktionen wird durch den Abfall ihrer Fourier-Koeffizienten charakterisiert und mehrere Abschätzungen für den Abtastfehler werden gezeigt, ergänzt durch numerische Tests für bis zu 25 Raumdimensionen. Zusätzlich wird der Spezialfall gestörter Rang-1-Gitter-Knoten betrachtet, und es wird eine schnelle Approximationsmethode basierend auf Taylorentwicklung vorgestellt.
Ein wichtiger Beitrag dieser Arbeit ist die Übertragung der Methoden vom periodischen auf den nicht-periodischen Fall. Multivariate algebraische Polynome in Chebyshev-Form werden als Ansatzfunktionen verwendet und sogenannte Rang-1-Chebyshev-Gitter als Diskretisierungen im Ortsbereich. Diese Strategie ermöglicht die Verwendung schneller Algorithmen basierend auf einer eindimensionalen DCT (diskreten Kosinustransformation). Die Glattheit von Funktionen kann durch den Abfall ihrer Chebyshev-Koeffizienten charakterisiert werden. Unter diesem Gesichtspunkt werden Abschätzungen für Abtastfehler gezeigt sowie numerische Tests für bis zu 25 Raumdimensionen.
Ein weiterer wichtiger Beitrag ist die Entwicklung einer Methode zur Berechnung einer hochdimensionalen dünnbesetzten FFT basierend auf Abtastwerten an Rang-1-Gittern, wobei diese Methode die Bestimmung unbekannter Frequenzen ermöglicht, welche zu den näherungsweise größten Fourier- oder Chebyshev-Koeffizienten einer Funktion gehören.
|
834 |
Multivariate Approximation and High-Dimensional Sparse FFT Based on Rank-1 Lattice SamplingVolkmer, Toni 28 March 2017 (has links)
In this work, the fast evaluation and reconstruction of multivariate trigonometric polynomials with frequencies supported on arbitrary index sets of finite cardinality is considered, where rank-1 lattices are used as spatial discretizations. The approximation of multivariate smooth periodic functions by trigonometric polynomials is studied, based on a one-dimensional FFT applied to function samples. The smoothness of the functions is characterized via the decay of their Fourier coefficients, and various estimates for sampling errors are shown, complemented by numerical tests for up to 25 dimensions. In addition, the special case of perturbed rank-1 lattice nodes is considered, and a fast Taylor expansion based approximation method is developed.
One main contribution is the transfer of the methods to the non-periodic case. Multivariate algebraic polynomials in Chebyshev form are used as ansatz functions and rank-1 Chebyshev lattices as spatial discretizations. This strategy allows for using fast algorithms based on a one-dimensional DCT. The smoothness of a function can be characterized via the decay of its Chebyshev coefficients. From this point of view, estimates for sampling errors are shown as well as numerical tests for up to 25 dimensions.
A further main contribution is the development of a high-dimensional sparse FFT method based on rank-1 lattice sampling, which allows for determining unknown frequency locations belonging to the approximately largest Fourier or Chebyshev coefficients of a function. / In dieser Arbeit wird die schnelle Auswertung und Rekonstruktion multivariater trigonometrischer Polynome mit Frequenzen aus beliebigen Indexmengen endlicher Kardinalität betrachtet, wobei Rang-1-Gitter (rank-1 lattices) als Diskretisierung im Ortsbereich verwendet werden. Die Approximation multivariater glatter periodischer Funktionen durch trigonometrische Polynome wird untersucht, wobei Approximanten mittels einer eindimensionalen FFT (schnellen Fourier-Transformation) angewandt auf Funktionswerte ermittelt werden. Die Glattheit von Funktionen wird durch den Abfall ihrer Fourier-Koeffizienten charakterisiert und mehrere Abschätzungen für den Abtastfehler werden gezeigt, ergänzt durch numerische Tests für bis zu 25 Raumdimensionen. Zusätzlich wird der Spezialfall gestörter Rang-1-Gitter-Knoten betrachtet, und es wird eine schnelle Approximationsmethode basierend auf Taylorentwicklung vorgestellt.
Ein wichtiger Beitrag dieser Arbeit ist die Übertragung der Methoden vom periodischen auf den nicht-periodischen Fall. Multivariate algebraische Polynome in Chebyshev-Form werden als Ansatzfunktionen verwendet und sogenannte Rang-1-Chebyshev-Gitter als Diskretisierungen im Ortsbereich. Diese Strategie ermöglicht die Verwendung schneller Algorithmen basierend auf einer eindimensionalen DCT (diskreten Kosinustransformation). Die Glattheit von Funktionen kann durch den Abfall ihrer Chebyshev-Koeffizienten charakterisiert werden. Unter diesem Gesichtspunkt werden Abschätzungen für Abtastfehler gezeigt sowie numerische Tests für bis zu 25 Raumdimensionen.
Ein weiterer wichtiger Beitrag ist die Entwicklung einer Methode zur Berechnung einer hochdimensionalen dünnbesetzten FFT basierend auf Abtastwerten an Rang-1-Gittern, wobei diese Methode die Bestimmung unbekannter Frequenzen ermöglicht, welche zu den näherungsweise größten Fourier- oder Chebyshev-Koeffizienten einer Funktion gehören.
|
835 |
An investigation into the solving of polynomial equations and the implications for secondary school mathematicsMaharaj, Aneshkumar 06 1900 (has links)
This study investigates the possibilities and implications for the teaching of the solving
of polynomial equations. It is historically directed and also focusses on the working
procedures in algebra which target the cognitive and affective domains. The teaching
implications of the development of representational styles of equations and their solving
procedures are noted. Since concepts in algebra can be conceived as processes or
objects this leads to cognitive obstacles, for example: a limited view of the equal sign,
which result in learning and reasoning problems. The roles of sense-making, visual
imagery, mental schemata and networks in promoting meaningful understanding are
scrutinised. Questions and problems to solve are formulated to promote the processes
associated with the solving of polynomial equations, and the solving procedures used by
a group of college students are analysed. A teaching model/method, which targets the
cognitive and affective domains, is presented. / Mathematics Education / M.A. (Mathematics Education)
|
836 |
[en] ANALYSIS TECHNIQUES FOR CONTROLLING ELECTRIC POWER FOR HIGH FREQUENCY DATA: APPLICATION TO THE LOAD FORECASTING / [pt] ANÁLISE DE TÉCNICAS PARA CONTROLE DE ENERGIA ELÉTRICA PARA DADOS DE ALTA FREQUÊNCIA: APLICAÇÃO À PREVISÃO DE CARGAJULIO CESAR SIQUEIRA 08 January 2014 (has links)
[pt] O objetivo do presente trabalho é o desenvolvimento de um algoritmo
estatístico de previsão da potência transmitida pela usina geradora termelétrica de
Linhares, localizada no Espírito Santo, medida no ponto de entrada da rede da
concessionária regional, a ser integrado em plataforma composta por sistema
supervisório em tempo real em ambiente MS Windows. Para tal foram
comparadas as metodologias de Modelos Arima(p,d,q), regressão usando
polinômios ortogonais e técnicas de amortecimento exponencial para identificar a
mais adequada para a realização de previsões 5 passos-à-frente. Os dados
utilizados são provenientes de observações registradas a cada 5 minutos, contudo,
o alvo é produzir estas previsões para observações registradas a cada 5 segundos.
Os resíduos estimados do modelo ajustado foram analisados via gráficos de
controle para checar a estabilidade do processo. As previsões produzidas serão
usadas para subsidiar decisões dos operadores da usina, em tempo real, de forma a
evitar a ultrapassagem do limite de 200.000 kW por mais de quinze minutos. / [en] The objective of this study is to develop a statistical algorithm to predict
the power transmitted by a thermoelectric power plant in Linhares, located at
Espírito Santo state, measured at the entrance of the utility regional grid, which
will be integrated to a platform formed by a real time supervisor system
developed in MS Windows. To this end we compared Arima (p,d,q), Regression
using Orthogonal Polynomials and Exponential Smoothing techniques to identify
the best suited approach to make predictions five steps ahead. The data used are
observations recorded every 5 minutes, however, the target is to produce these
forecasts for observations recorded in every five seconds. The estimated residuals
of the fitted model were analysed via control charts to check on the stability of
the process. The forecasts produced by this model will be used to help not to
exceed the 200.000 kW energy generation upper bound for more than fifteen
minutes.
|
837 |
Calcul des invariants de groupes de permutations par transformée de Fourier / Calculate invariants of permutation groups by Fourier TransformBorie, Nicolas 07 December 2011 (has links)
Cette thèse porte sur trois problèmes en combinatoire algébrique effective et algorithmique.Les premières parties proposent une approche alternative aux bases de Gröbner pour le calcul des invariants secondaires des groupes de permutations, par évaluation en des points choisis de manière appropriée. Cette méthode permet de tirer parti des symétries du problème pour confiner les calculs dans un quotient de petite dimension, et ainsi d'obtenir un meilleur contrôle de la complexité algorithmique, en particulier pour les groupes de grande taille. L'étude théorique est illustrée par de nombreux bancs d'essais utilisant une implantation fine des algorithmes. Un prérequis important est la génération efficace de vecteurs d'entiers modulo l'action d'un groupe de permutation, dont l'algorithmique fait l'objet d'une partie préliminaire.La quatrième partie cherche à déterminer, pour un certain quotient naturel d'une algèbre de Hecke affine, quelles spécialisations des paramètres aux racines de l'unité donne un comportement non générique.Finalement, la dernière partie présente une conjecture sur la structure d'une certaine $q$-déformation des polynômes harmoniques diagonaux en plusieurs paquets de variables pour la famille infinie de groupes de réflexions complexes.Tous ces chapitres s'appuient fortement sur l'exploration informatique, et font l'objet de multiples contributions au logiciel Sage. / This thesis concerns algorithmic approaches to three challenging problems in computational algebraic combinatorics.The firsts parts propose a Gröbner basis free approach for calculating the secondary invariants of a finite permutation group, proceeding by using evaluation at appropriately chosen points. This approach allows for exploiting the symmetries to confine the calculations into a smaller quotient space, which gives a tighter control on the algorithmic complexity, especially for large groups. The theoretical study is illustrated by extensive benchmarks using a fine implementation of algorithms. An important prerequisite is the generation of integer vectors modulo the action of a permutation group, whose algorithmic constitute a preliminary part of the thesis.The fourth part of this thesis is determining for a certain interesting quotient of an affine Hecke algebra exactly which root-of-unity specialization of its parameter lead to non-generic behavior.Finally, the last part presents a conjecture on the structure of certain q-deformed diagonal harmonics in many sets of variables for the infinite family of complex reflection groups.All chapters proceed widely by computer exploration, and most of established algorithms constitute contributions of the software Sage.
|
838 |
A geometria de algumas famílias tridimensionais de sistemas diferenciais quadráticos no plano / The geometry of some tridimensional families of planar quadratic differential systemsRezende, Alex Carlucci 22 September 2014 (has links)
Sistemas diferenciais quadráticos planares estão presentes em muitas áreas da matemática aplicada. Embora mais de mil artigos tenham sido publicados sobre os sistemas quadráticos ainda resta muito a se conhecer sobre esses sistemas. Problemas clássicos, e em particular o XVI problema de Hilbert, estão ainda em aberto para essa família. Um dos objetivos dos pesquisadores contemporâneos é obter a classificação topológica completa dos sistemas quadráticos. Devido ao grande número de parâmetros (essa família possui doze parâmetros e, aplicando transformações afins e reescala do tempo, reduzimos esse número a cinco, sendo ainda um número grande para se trabalhar) usualmente subclasses são consideradas nas investigações realizadas. Quando características específicas são levadas em consideração, o número de parâmetros é reduzido e o estudo se torna possível. Nesta tese estudamos principalmente duas subfamílias de sistemas quadráticos: a primeira possuindo um nó triplo semielemental e a segunda possuindo uma selanó semi elemental finita e uma selanó semielemental infinita formada pela colisão de uma sela infinita com um nó infinito. Os diagramas de bifurcação para ambas as famílias são tridimensionais. A família tendo um nó triplo gera 28 retratos de fase topologicamente distintos, enquanto o fecho da família tendo as selasnós dentro do espaço de bifurcação de sua forma normal gera 417. Polinômios invariantes são usados para construir os conjuntos de bifurcação e os retratos de fase topologicamente distintos são representados no disco de Poincaré. Os conjuntos de bifurcação são a união de superfícies algébricas e superfícies cuja presença foi detectada numericamente. Ainda nesta tese, apresentamos todos os retratos de fase de um sistema diferencial conhecido como modelo do tipo SIS (sistema suscetívelinfectadosuscetível, muito comum na matemática aplicada) e a classificação dos sistemas quadráticos possuindo hipérboles invariantes. Ambos sistemas foram investigados usando de polinômios invariantes afins. / Planar quadratic differential systems occur in many areas of applied mathematics. Although more than one thousand papers have been written on these systems, a complete understanding of this family is still missing. Classical problems, and in particular Hilberts 16th problem, are still open for this family. One of the goals of recent researchers is the topological classification of quadratic systems. As this attempt is not possible in the whole class due to the large number of parameters (twelve, but, after affine transformations and time rescaling, we arrive at families with five parameters, which is still a large number), many subclasses are considered and studied. Specific characteristics are taken into account and this implies a decrease in the number of parameters, which makes possible the study. In this thesis we mainly study two subfamilies of quadratic systems: the first one possessing a finite semielemental triple node and the second one possessing a finite semielemental saddlenode and an infinite semielemental saddlenode formed by the collision of an infinite saddle with an infinite node. The bifurcation diagram for both families are tridimensional. The family having the triple node yields 28 topologically distinct phase portraits, whereas the closure of the family having the saddlenodes within the bifurcation space of its normal form yields 417. Invariant polynomials are used to construct the bifurcation sets and the phase portraits are represented on the Poincaré disk. The bifurcation sets are the union of algebraic surfaces and surfaces whose presence was detected numerically. Moreover, we also present the analysis of a differential system known as SIS model (this kind of systems are easily found in applied mathematics) and the complete classification of quadratic systems possessing invariant hyperbolas.
|
839 |
Simulação de fenômenos óticos e fisiológicos do sistema de visão humana / Simulation of optical and physiological phenomena of the human visionFernandes, Leandro Henrique Oliveira 07 March 2008 (has links)
O ganho crescen te de desempenho nos computadores modernos tem impulsionado os trabalhos científicos nas áreas de simulação computacional. Muitos autores utilizam em suas pesquisas ferramentas comerciais que limitam seus trabalhos ao esconder os algoritmos internos destas ferramentas e dificultam a adição de dados in-vivo nestes trabalhos. Este trabalho explora esta lacuna deixada por aqueles autores. Elaboramos um arcabouço computacional capaz de reproduzir os fenômenos óticos e fisiológicos do sistema visual. Construímos com superfícies quádricas os modelos esquemáticos do olho humano e propomos um algoritmo de traçado de raio realístico. Então realizamos um estudo nos modelos esquemáticos e a partir deles mais a adição de dados in-vivo obtidos de um topógrafo de córnea extraímos informações óticas destes modelos. Calculamos os coeficientes e Zernike dos modelos para tamanhos diversos de pupila e obtivemos medidas de aberração do olho humano. Os resultados encontrados estão de acordo com os trabalhos relacionados e as simulações com dados in-vivo estão consoantes com as produzidas por um aparelho de frente de onda comerciais. Este trabalho é um esforço em aproveitar as informações adquiridas pelos equipamentos modernos de oftalmologia, além de auxiliar o entendimento de sistemas visuais biológicos acabam também em auxiliar a elaboração de sistemas de visão artificial e os projetistas de sistemas óticos / The increase in performance of the modern computers has driven scientific work in the areas of computer simulation. Many authors use in their research commercial tools that use embedding algorithms, which sources are not provided, and it makes harder and sometimes impossible, the development of novel theories or experiments. This work explores this gap left for those authors. We present a computational framework capable to reproduce the optical and physiological phenomena of the human visual system. We construct schematical models of the human eye from quadrics surfaces and consider an algorithm of realistic ray tracing. Afterward, we performed a study on schematics models and in addition we introduce, in these models, in-vivo data obtained from corneal topography machine and extract optical information. We calculate the Zernike coefficients in the models for different sizes of pupil and measures of aberration of the human eye. The results are in agreement with related work and simulations with in-vivo data are according with the produced by a commercial wave-front device. This work is an effort in using to advantage the information acquired for the modern equipment of ophthalmology, besides assisting the understanding of biological visual systems, it also helps the development of artificial vision systems and the designing of optical systems
|
840 |
Some contributions in probability and statistics of extremes.Kratz, Marie 15 November 2005 (has links) (PDF)
Part I - Level crossings and other level functionals.<br />Part II - Some contributions in statistics of extremes and in statistical mechanics.
|
Page generated in 0.0776 seconds