Spelling suggestions: "subject:"PPy film"" "subject:"PPy ilm""
1 |
Structural Analysis Of Polyaniline-polypyrrole Copolymers Via Pyrolysis Mass SpectrometryTezal, Feride 01 February 2007 (has links) (PDF)
This thesis describes recent progress in electrochemical preparation of several
conducting polymers. In particular, the synthesis and characterizations of pure
polyaniline, pure polypyrrole, polyaniline/polypyrrole and polypyrrole/polyaniline
copolymers and polyaniline-polypyrrole physical blends were studied. The focus
has included firstly synthesis of these electrically conductive polymers.
Secondly, thermal characteristics of electrochemically synthesized homopoly- mers,
copolymers and their physical blends were investigated by thermal gravi- metric
analysis (TGA), differential scanning calorimetry (DSC) and direct pyrol- ysis mass
spectrometry (DIP-MS) techniques. In general, TGA analysis showed three-step
thermal degradation. The first, at 100oC, was attributed to water, and unreacted
monomers. The second weight losses observed at around 150 oC was because of
evolution of water and/or acid. Finally, the removal of the dopant ion and low
molecular weight species from the matrix were observed for pure PANI and pure PPy
at 230 and 280 oC, respectively. PANI/PPy films and PPy/PANI films have
decomposition temperatures at 272oC because of the loss of the dopant ion. It was also observed that pure PPy was thermally more resistant than pure PANI.
Thirdly, thermal characteristics, and degradation products of electrochemi- cally
prepared PANI/PPy and PPy/PANI films in solutions containing variable dopant
(SO42& / #8722 / ) concentrations were analyzed and compared with pyrolysis mass spectrometry.
Similar to TGA study, there were three main thermal degradation steps namely,
evolution of low molecular weight species, dopant based products and degradation
products of polymers. The dopant concentration was monitored
to optimize the degradation behavior. Pyrolysis mass spectrometry data showed that the degree of degradation of the polymer already coated on the electrode
enhanced as the dopant concentration used in synthesis increased.
|
2 |
Studies On Conducting Polymer Microstructures : Electrochemical Supercapacitors, Sensors And ActuatorsPavan Kumar, K 07 1900 (has links) (PDF)
With the discovery of conductivity in doped polyacetylene (PA), a new era in synthetic metals has emerged by breaking the traditionally accepted view that polymers were always insulating. Conducting polymers are essentially characterized by the presence of conjugated bonding on the polymeric back bone, which facilitates the formation of polarons and bipolarons as charge carriers. Among the numerous conducting polymers synthesized to date, polypyrrole (PPy) is by far the most extensively studied because of prodigious number of applications owing to its facile polymerizability, environmental stability, high electrical conductivity, biocompatibility, and redox state dependent physico-chemical properties. Electrochemically prepared PPy is more interesting than the chemically prepared polymer because it adheres to the electrode surface and can be directly used for applications such as supercapacitors, electrochemical sensors, electromechanical actuators and drug delivery systems.
In quest for improvement in quality of the device performances in the mentioned applications, micro and nano structured polymeric materials which bring in large surface area are studied. Finding a simple and efficient method of synthesis is very important for producing devices of PPy microstructures. Till date, Hard and soft template methods are the most employed methods for synthesis of these structures. Soft template based electrochemical methods are better than hard template methods to grow clean PPy microstructures on electrode substrates as procedures for removal of hard templates after the growth of microstructures are very complex. As per the literature, there is no unique method available to grow PPy microstructures which can demonstrate several applications. Although gas bubble based soft template methods are exploited to grow conducting polymer microstructures of sizes in few hundreds of micrometers, studies on applications of the same are limited. Hence it is planned to develop procedures to grow microstructures that can be used in several applications. In the current work, PPy microstructures with high coverage densities are synthesized on various electrode substrates by soft template based electrochemical techniques.
Hollow, hemispherical and spherical PPy microstructures are developed by a two step method using electro generated hydrogen bubble templates on SS 304 electrodes. In the first step, Hydrogen bubbles are electro generated and stabilized on the electrode in the presence of β- naphthalene sulfonic acid (β-NSA). In the second step, Pyrrole is oxidised over the bubble template to form PPy microstructures. Microstructures (open and closed cups) of average size 15 μm are uniformly spread on the surface with a coverage density of 2.5×105 units /cm2.
Globular PPy microstructures are developed by a single step method using concomitantly electro generated oxygen bubble templates on SS 304 electrodes during electropolymerization. Microstructures of average size 4 μm are uniformly spread on the surface with a coverage density of 7×105 units/cm2.
Surfactant properties of Zwitterionic 4-(2-hydroxyethyl)-1-piperazine ethane sulfonic acid (HEPES) are exploited for the first time to grow conducting polymer microstructures. Ramekin shaped PPy microstructures are developed using HEPES as the surfactant to stabilize hydrogen bubble templates in a two step electrochemical synthesis method. Microramekins of size 100 µm are uniformly spread on the surface with a coverage density of 3000 units/cm2. Micropipettes and microhorns of PPy are synthesised by a single step electrochemical route using HEPES as a surfactant. Hollow micropipettes of length 7 µm with an opening of 200 nm at the top of the structure are observed. Similarly microhorn/celia structures are observed with length 10-15 µm. Microcelia are uniformly distributed over the surface with each structure having a diameter of 2 µm at the base to 150 nm at the tip. Growth mechanism based on contact angle of the reactant solution droplets on the substrate is proposed.
PPy microstructures are characterized by scanning electron microscopy, X-Ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, Raman Spectroscopy and UV-Visible spectroscopy to study morphology, ‘chemical bonding and structure’ , ‘defects and charge carriers’.
Applicability of the electrodes with PPy microstructures in supercapacitors is investigated by cyclic voltammetry, chronopotentiometry and electrical impedance spectroscopy. Electrodes developed by all the above methods demonstrated very good supercapacitance properties. Supercapacitor studies revealed very high specific capacitances (580, 915, 728 and 922 F/g,) and specific powers (20, 25, 13.89 and 15.91 kW/kg) for electrodes with PPy microstructures (H2 bubble based two step method, O2 bubble based single step method, HEPES stabilized H2 bubbble method and HEPES based microhorn/celia structures respectively). Supercapacitive behavior of all the electrodes is retained even after an extended charge-discharge cycling in excess of 1500 cycles.
Horseradish peroxidase entrapped, bowl shaped PPy microstructures are developed for H2O2 biosensing. Amperometric biosensor has a performance comparable to the sensors reported in the literature with high sensitivity value of 12.8 μA/(cm2.mM) in the range 1.0 mM to 10 mM. Glucose oxidase entrapped PPy amperometric biosensor is developed for Glucose sensing. Sensitivity of 1.29 mA/(cm2.mM) is observed for β-D-Glucose sensing in the 0.1 mM to 5.0 mM range while 58 μA/(cm2.mM) is observed in the 5.0 to 40 mM range. Potentiometric urea sensor with urease entrapped PPy microstructures on SS electrode is developed. It is able to sense urea in the micromolar ranges down to 0.1 μM. It represented an excellent performance with sensitivity of 27 mV/decade. Sensitivity in the micromolar range is 4.9 mV/(μM.cm2).
Drug encapsulation and delivery is successfully demonstrated by two actuation means (i) by electrochemical actuation, (ii) by actuation based on pH changes. Concepts are proved by delivering a fluorescent dye into neutral and acidic solutions. Drug delivery is confirmed by UV-Visible spectroscopy and Fluorescence microscopy.
Finally, Micro/nanostructures with Tangerine, Hollow globular (Pani Poori), Chip, Flake, Rose, Worm, Horn and Celia shapes are synthesized electrochemically and scanning electron microscopic studies are presented. Controlled growth of microstructures on lithographically patterned gold interdigital electrodes is demonstrated with a future goal of creating addressable microstructures.
The studies reported in the thesis provide an insight on various applications of PPy microstructures (supercapacitors, sensors and drug delivery systems) developed by a unique methodology based on electrochemically generated gas bubble templates.
|
Page generated in 0.0477 seconds