11 |
Vamzdyno trūkio vietos nustatymo algoritmo sukūrimas pagal fizikine elgsena grįstą slėgio bangos sklidimo modelį / Algorithm for identification of pipeline rupture location based on finite element model of pressure wave propagationKriščiūnas, Andrius 04 November 2013 (has links)
Darbo metu apžvelgiami metodai pereinamiesiems procesams vamzdyne realizuoti. Aprašyta vamzdyno tėkmės pereinamųjų procesų dinamika matematinės lygtys ir sudarytas baigtinių elementų modelis skaitiniam vamzdynų pereinamųjų procesų modeliavimui. Panaudojant atgalinį slėgio bangos modeliavimą esant idealizuotam slėgio bangos sklidimo modeliui, sudaromas slėgio impulso vietos nustatymo algoritmas ir įvertinamos atsirandančios paklaidos. Realizuota programine įranga patikrinamas sudarytų modelių ir algoritmo teisingumas, bei pateikiami pasiūlymai, atsiradusioms paklaidoms mažinti. / During this research, the methods to realize the transient processes in piping systems are overviewed, also finite element method and idealized wave propagation of pressure mathematical models are set up. Using the backward pressure wave modelling at idealized pressure wave propagation model, piping system rupture location algorithm and the assessment of estimated errors are set up. With released software, the developed models and correctness of the algorithm are verified, and suggestions to reduce the resulting errors are presented.
|
12 |
Model pro určení směrovosti šíření zvuku / Sound emission directivity modelZdvyhal, Marian January 2016 (has links)
This diploma thesis solves creation of a computing model of sound propagation for determination of acoustic pressure level around multiple point sound source with consideration of sound directivity of each source (compresor and fan). Thesis contains neccesary theoretical knowledge for creation of computing model and basics of sound measuring, theoretical computing model, measurement data of real unit and model configuration for real measured values. Computing code of the model in Visual Basic for MS Excel is a part of the thesis.
|
13 |
Ermittlung bleibender Bodenverformungen infolge dynamischer Belastung mittels numerischer VerfahrenWegener, Dirk 25 October 2012 (has links)
In der Arbeit wird gezeigt, wie man die Bodensteifigkeit bei sehr kleinen Dehnungen sowie die Abnahme der Steifigkeit mit zunehmender Scherdehnung in Labor- und Feldversuchen ermitteln kann. Dazu werden typische Eigenschaften mineralischer und organischer Böden einschließlich Korrelationen zusammengestellt und wesentliche Unterschiede zum Bodenverhalten bei großen Dehnungen, insbesondere hinsichtlich der Steifigkeit und der Spannungsabhängigkeit aufgezeigt.
Weiterhin wird dargelegt, wie man mit dem hypoplastischen Stoffgesetz mit intergranularen Dehnungen das Bodenverhalten bei kleinen Dehnungen wirklichkeitsnah erfassen kann und wie die Stoffparameter zu bestimmen sind. Für die realistische Erfassung des Bodenverhaltens infolge zyklischer Belastung einschließlich der Ausbildung von Hystereseschleifen wird eine Modifizierung des hypoplastischen Stoffgesetzes unter Einführung eines zusätzlichen Stoffparameters vorgenommen. Es wird gezeigt, wie dieser Parameter in zyklischen Laborversuchen bestimmt werden kann und wie damit die Akkumulation von Dehnungen bei drainierten Bedingungen bzw. von Porenwasserdrücken bei undrainierten Bedingungen zuverlässig prognostiziert werden kann.
Anhand der dynamischen Beanspruchung eines Eisenbahndammes auf weichem, organischem Untergrund wird das modifizierte hypoplastische Stoffgesetz mit intergranularen Dehnungen für ein bodendynamisches Randwertproblem angewendet und gezeigt, dass damit das Bodenverhalten realistisch abgebildet werden kann. Die Berechnungsergebnisse zeigen eine gute Übereinstimmung mit Ergebnissen von Schwingungsmessungen und Langzeitverformungsmessungen.
Es werden bodendynamische Berechnungen zur Wellenausbreitung sowohl eindimensional als auch im Halbraum mit unterschiedlichen Stoffgesetzen geführt und Vergleiche mit analytischen Lösungen vorgenommen. Dazu wird gezeigt, welche Anforderungen an numerische Berechnungen zur Wellenausbreitung, insbesondere hinsichtlich Wahl der Zeitschritte, Elementgröße bzw. Knotenabstände, Größe des FE-Netzes und Modellierung der FE-Ränder erforderlich sind.:1 Einführung
2 Bodensteifgkeit
2.1 Defnition der Scherdehnung und der Schubspannung
2.2 Versuchstechnische Ermittlung der Bodensteifgkeiten
2.3 Ermittlung der Bodensteifgkeiten im Feld
2.4 Ermittlung der Bodensteifgkeiten im Labor
2.5 Bodensteifgkeit bei sehr kleinen Dehnungen
2.6 Abnahme der Steifigkeit mit zunehmender Scherdehnung
2.7 Bodenverhalten und Scherdehnungsgrenzen
2.8 Weitere bodendynamische Eigenschaften
3 Hypoplastisches Stogesetz
3.1 Allgemeine Formulierung der Hypoplastizität
3.2 Intergranulare Dehnungen
3.3 Bereich mit sehr kleinen Dehnungen
3.4 Bereich mit kleinen bis mittleren Dehnungen
3.5 Vergleich der Ergebnisse mit dem HS-Small-Modell
3.6 Zusammenfassung und Wertung der Ergebnisse
4 Numerische Berechnungen zur Wellenausbreitung
4.1 Eindimensionale Wellenausbreitung
4.2 Wellenausbreitung im Halbraum
4.3 Wellenausbreitung im porösen Medium
5 Anwendungsbeispiel
5.1 Geometrische Situation, Baugrundschichtung
5.2 Bodenmechanische und bodendynamische Kennwerte
5.3 Schwingungsmessungen
5.4 Messung von bleibenden Verformungen
5.5 Belastung
5.6 Numerische Modellierung
5.7 Hypoplastische Berechnung
5.8 Vergleich Mess- und Berechnungsergebnisse
5.9 Linear elastische Berechnung
5.10 Vergleich der Ergebnisse mit hypoplastischer und elastischer Berechnung
6 Zusammenfassung und Ausblick
Summary
Literaturverzeichnis
Symbolverzeichnis
Anhang A Berechnungen zur Wellenausbreitung
Anhang B Eingabedateien für Berechnungen mit TOCHNOG
Anhang C Herleitungen der Biot-Theorie / In this thesis it is shown how to determine the soil stiffness at very small strains, as well as the decrease in stiffness with increasing shear strain amplitude in laboratory and field tests. Typical properties and empirical correlations of coarse-, fine-grained and organic soils are collected and significant differences in soil stiffness and stress-dependence at small strains compared to large strains are shown.
Further it is shown how one can realistically reproduce the soil behaviour at small strains with the hypoplastic constitutive model with intergranular strains and how the material parameters are determined. For a realistic prediction of soil behaviour due to cyclic loading including hysteresis loops in the stress-strain relationship, a modification of the hypoplastic constitutive model is made by using an additional material parameter. It is shown how this additional parameter can be determined in cyclic laboratory tests and how the accumulation of strains in drained conditions and excess pore pressures built up in undrained conditions can be realistically reproduced.
Based on the dynamic load on a railway embankment on soft marshy ground, the modified hypoplastic constitutive model with intergranular strains is applied for a boundary value problem. It is demonstrated, that the soil behaviour can be reproduced realistically. Numerical results show a good agreement with results of vibration measurements and measurements of permanent displacements.
A dynamical numerical analysis is performed for both one-dimensional and half-space conditions. Different constitutive models have been applied and compared with analytical solutions. The results demonstrate requirements on numerical analysis of wave propagation, in particular with regards to time steps, element size, node spacing, size of the FE mesh and boundary conditions.:1 Einführung
2 Bodensteifgkeit
2.1 Defnition der Scherdehnung und der Schubspannung
2.2 Versuchstechnische Ermittlung der Bodensteifgkeiten
2.3 Ermittlung der Bodensteifgkeiten im Feld
2.4 Ermittlung der Bodensteifgkeiten im Labor
2.5 Bodensteifgkeit bei sehr kleinen Dehnungen
2.6 Abnahme der Steifigkeit mit zunehmender Scherdehnung
2.7 Bodenverhalten und Scherdehnungsgrenzen
2.8 Weitere bodendynamische Eigenschaften
3 Hypoplastisches Stogesetz
3.1 Allgemeine Formulierung der Hypoplastizität
3.2 Intergranulare Dehnungen
3.3 Bereich mit sehr kleinen Dehnungen
3.4 Bereich mit kleinen bis mittleren Dehnungen
3.5 Vergleich der Ergebnisse mit dem HS-Small-Modell
3.6 Zusammenfassung und Wertung der Ergebnisse
4 Numerische Berechnungen zur Wellenausbreitung
4.1 Eindimensionale Wellenausbreitung
4.2 Wellenausbreitung im Halbraum
4.3 Wellenausbreitung im porösen Medium
5 Anwendungsbeispiel
5.1 Geometrische Situation, Baugrundschichtung
5.2 Bodenmechanische und bodendynamische Kennwerte
5.3 Schwingungsmessungen
5.4 Messung von bleibenden Verformungen
5.5 Belastung
5.6 Numerische Modellierung
5.7 Hypoplastische Berechnung
5.8 Vergleich Mess- und Berechnungsergebnisse
5.9 Linear elastische Berechnung
5.10 Vergleich der Ergebnisse mit hypoplastischer und elastischer Berechnung
6 Zusammenfassung und Ausblick
Summary
Literaturverzeichnis
Symbolverzeichnis
Anhang A Berechnungen zur Wellenausbreitung
Anhang B Eingabedateien für Berechnungen mit TOCHNOG
Anhang C Herleitungen der Biot-Theorie
|
14 |
Development and testing of alternative methods for speeding up the hydraulic data transmission in deep boreholesBerro, Mouhammed Jandal 15 February 2019 (has links)
For developing the available hydrocarbon reserves and for exploring new reservoirs, deeper and more complex wells are drilled. Drilling such deeper and complex wells requires a constant monitoring and controlling of the well paths. Therefore, the bottom hole assembly, the lower section of the drill string above the drill bit, is equipped with numerous measuring sensors for collecting geological and directional data while drilling. The collected data have to be transmitted to the surface in real time.
Prior to transmit the data measured downhole to the surface, they are processed and translated into a binary code. Accordingly, the data will be represented as a series of zeroes and ones. The most common method for data transmission in boreholes is the so called mud pulse telemetry which sends the information through the drilling mud inside the drill string by means of coded pressure pulses. There are two types of devices available for downhole pressure pulses generation. The first type is the (positive or negative) pressure pulser which transmits the data by quasi-static variations of the pressure level inside the drill string. The second type is the (rotating or oscillating) mud siren which transmits the data by generating continuous pressure waves at specific frequencies.
The main disadvantage of the mud pulse telemetry is its low data transmission rate which is about 10 bps. This data rate is very low compared to the measured amount of raw data. Therefore, the efficiency of the mud pulse telemetry must be improved, so that the data could be transmitted at higher rates. The present research work presents different developed and tested concepts for increasing the efficiency and the data transmission rate of the mud pulse telemetry. Both, the transmitter and the receiver end, were taken into consideration by developing the new concepts. Different hardware and software tools were used for performing the present research work. The available flow loop test facility and the experimental prototypes of the mud siren and positive pulser were used. The test facility was extended in order to enable the investigation of the new concepts. The available 3D numerical model (ANSYS CFX) was modified and extended in order to study the new concepts.
At the transmitter end, a novel concept for a hybrid mud pulse telemetry system was developed and successfully tested. Here, two different types of mud pulse telemetry could be used in a combination, such as a mud siren and a pressure pulser. The developed concept was registered at the German Patent and Trade Mark Office for a patent in 2018. Two concepts for a multi-frequency mud siren were developed for simultaneous generation of two frequencies. In the first approach, two sets of stator/rotor were installed in a row connection, while they were installed in a parallel connection in the second approach. The two concepts were registered at the German Patent and Trade Mark Office for patents in 2015. An experimental multi-frequency generator was built and used for testing of several new ideas, such as transmitting the data using several carrier frequencies at the same time, transmitting the data with different wave forms (sine, sawtooth, triangle and rectangle), or transmitting the data using the chirp modulation. The innovative design of the experimental multi-frequency generator was registered at the German Patent and Trade Mark Office for patents in 2016.
At the receiver end, two different methods for processing and analyzing the received multi-frequency signals using the Wavelet and Fourier analysis were drafted and tested. A novel concept for the use of a multi-sensor receiver was developed and successfully tested. The use of a multi-sensor receiver could strongly improve the detection of the received signals.:Table of Contents
Declaration ii
Abstract iii
Acknowledgements v
Table of Contents vi
List of Abbreviations x
List of Symbols xii
CHAPTER 1 Introduction 1
CHAPTER 2 Modern Drilling Technology and Low Data Transmission Rate as a Limitation 5
2.1 Introduction to the modern drilling technology 5
2.1.1 Directional drilling technology 5
2.1.2 Steering technology 6
2.1.3 Measuring technology 8
2.1.4 Technology of data transmission in boreholes 9
2.2 Low data transmission rate as a problem with respect to the whole drilling process 13
CHAPTER 3 Fundamentals of Communication Technology 16
3.1 Modulation techniques for data transmission in baseband 16
3.2 Modulation techniques for data transmission in passband 17
3.3 Multiple frequency and chirp spread spectrum modulation techniques 19
3.4 Digital signal processing 21
3.4.1 Fourier transformation 21
3.4.2 Continuous wavelet transformation 23
3.4.3 Filtering 24
CHAPTER 4 State of the Art for Mud Pulse Telemetry Systems 26
4.1 Historical development of mud pulse telemetry including latest improvements applied for increasing its data transmission rate 26
4.2 Available types of mud pulse telemetry devices 30
4.2.1 Negative pulser 31
4.2.2 Positive pulser 32
4.2.3 Mud siren 32
4.2.4 Oscillating shear valve 33
4.3 Limitations of data transmission via mud pulse telemetry 34
4.3.1 Effect of noise sources in the mud channel on the transmission signal 34
4.3.2 Effect of attenuation in the mud channel on the transmission signal 36
4.3.3 Effect of reflections and their interference with the main transmission signal 37
4.3.4 Pass and stop bands 38
4.4.5 Minimum transmission time slot 38
CHAPTER 5 Novel Concepts and Tools for Increased Data Transmission Rates of Mud Pulse Telemetry 40
5.1 Transmitter end 41
5.1.1 Hybrid mud pulse telemetry (HMPT) 41
5.1.2 Multi-frequency generator 43
5.2 Receiver end 45
5.2.1 Investigation of the Wavelet analysis suitability for multi-frequency signal detection 45
5.2.2 Flexible placement of multi-sensor receiver 46
CHAPTER 6 Laboratory Test Facility and Used Hard and Soft Tools 49
6.1 Laboratory test facility for hydraulic data transmission in boreholes 49
6.2 Experimental prototypes of the pressure pulsers and mud siren 53
6.3 3D numerical simulation model for the test facility and mud siren 55
6.4 MATLAB software 58
CHAPTER 7 Hybrid Mud Pulse Telemetry (HMPT) System 59
7.1 Combination of mud siren and negative pressure pulser 60
7.2 Combination of mud siren and positive pressure pulser 63
7.3 Evaluating the laboratory investigations of the hybrid mud pulse telemetry (HMPT) system 66
CHAPTER 8 Mathematical and Numerical Investigation of the Concept of the Multi-Frequency Mud Siren 68
8.1 Preliminary considerations for the concept of the multi-frequency mud siren 69
8.2 Mathematical model investigation of different approaches for the multi-frequency mud siren concept 71
8.2.1 Multi-frequency mud siren with stators and rotors in a row 72
8.2.2 Multi-frequency mud siren with parallel connection of stators and rotors 74
8.3 Numerical model investigation of multi-frequency mud siren with two sets of stator/rotor in a row 77
8.3.1 Numerical simulations for data transmission with a multi-frequency mud siren using two carrier frequencies 79
8.3.2 Evaluation of the simulation results 81
8.3.3 Increasing the transmission reach of the mud siren for deep drilling operations 83
CHAPTER 9 Laboratory Investigations of Multi-Carrier Hydraulic Data Transmission Using an Experimental Multi-Frequency Generator 85
9.1 Laboratory multi-carrier frequency transmission tests 87
9.2 Investigation of the Wavelet analysis suitability for the detection of multi-frequency signal transmitted in boreholes 95
9.3 Initial investigations of hydraulic data transmission using chirp modulation and different pressure wave forms 100
9.3.1 Data transmission using chirp modulation (Chirp Spread Spectrum, CSS) 100
9.3.2 Data transmission using different wave forms 101
CHAPTER 10 Investigation of the Use of a Multi-Sensor Receiver for Improving the Hydraulic Data Transmission in Boreholes 104
10.1 Numerical model investigation of the use of a multi-sensor receiver 104
10.1.1 Data transmission using single-input and multiple-output (SIMO) 104
10.1.2 Data transmission using multiple-input and multiple-output (MIMO) 107
10.2 Laboratory investigations of the use of a multi-sensor receiver 108
10.3 Evaluating the use of a multi-sensor receiver for improving the hydraulic data transmission in boreholes 112
CHAPTER 11 Conclusion and Outlook 116
11.1 Conclusion 116
11.2 Outlook 120
References 122
List of Figures 129
List of Tables 136
List of Publications 137
List of Patents 138
Appendix- Chapter 7 139
Appendix- Chapter 8 141
Appendix- Chapter 9 142
Appendix- Chapter 10 146
|
Page generated in 0.0277 seconds