• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 6
  • 6
  • 5
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 52
  • 12
  • 11
  • 10
  • 9
  • 8
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

The Study of Pyroelectric Infrared Detectors Prepared by a Sol-Gel Technology

Kao, Ming-Cheng 30 July 2004 (has links)
In this thesis, the lithium tantalite [LiTaO3, abbreviated to LT] thin films were deposited on Pt/Ti/SiO2/Si substrates by spin coating with sol-gel processing and rapid thermal processing. 1,3 propanediol was used as solvent to minimize the number of cycles of spin coating and drying processes to obtain the desired thickness of thin film. By changing the heating rate (600~3000¢J/min) and the heating temperature (500~800¢J), the effects of various processing parameters on the thin films growth are studied. In addition, the thermal isolation of detecting elements was achieved by the anisotropic wet etching of back silicon substrate. In order to reduce the thermal mass and thermal time constant of detector, the sensing element was built-up on a thin membrane. By changing the membrane thickness (20~350 £gm), the effects of various membrane thickness on the response of pyroelectric IR detector devices are studied also. Experimental results reveal that the heating rate will influence strongly on grain size, dielectricity, ferroelectricity and pyroelectricity of LT thin films. With the increase of heating rate, the grain size of LT thin film decreases slightly, and the c-axis orientation is enhanced. The relative dielectric constant (£`r ) of LT thin film increases from 28 up to 45.6, the dielectric loss (tan
22

The Properties of Tantalate Modified Lithium Niobate Pyroelectric Thin Film Detectors Prepared by the Sol-Gel Processes

Wu, Jui-Chuan 03 July 2003 (has links)
The Ta-modified niobate lithium [LiNb1-xTaxO3, abbreviated to LNT] thin films were deposited on Pt/Ti/SiO2/Si substrates by spin coating with sol-gel technology and rapid thermal processing in this thesis. 1,3 propanediol was used as solvent to minimize the number of cycles of spin coating and drying processes to obtain the desired thickness of thin film. By changing the Ta content (x=0~1), the effects of various processing parameters on the thin films growth are studied. The effects of various Ta content on the response of pyroelectric IR detector devices are studied also. Experimental results reveal that the Ta content will influence strongly on grain size, dielectricity, ferroelectricity and pyroelectricity of LNT thin films. With the increase of Ta content, the grain size of LNT thin film decreases slightly, and highly c-axis orientated LNT films have been obtained for x=0.2. With the increase of Ta content, The relative dielectric constant of LNT thin film increases from 33 up to 62. The dielectric loss (tand) increases from 0.00374 to 0.00686,Coercive Field (Ec) decreases from 81.09KV/cm to 32.07KV/cm, and Remanent polarization (Pr) decreases from 8.48 mC/cm2 to 2.2 mC/cm2, pyroelctric coefficient (g) increases from 2.76´10-8 C/cm2K up to 4.51´10-8 C/cm2K with an increase of Ta content. In addition, the results also show that the LNT thin film possesses the largest figures of merit Fv (2.66¡Ñ10-10 Ccm/J) and Fm (2.57¡Ñ10-8 Ccm/J) at the heating temperature of 700¢J and Ta content of 20mol%. The voltage responsivities (Rv) measured at 70 Hz has a largest value of 7020 V/W with the Ta content of 20mol%. The specific detectivity (D*) measured at 200 Hz has the maximum value of 7.76¡Ñ107 cmHz1/2/W with the Ta content of 20mol%. The results show that LNT(20) pyroelectric thin film detector exists both the maximums of voltage responsivity and specific detecivity. Therefore, optimizing the conditions of this study, LNT(20) thin film will be the most suitable for IR detector application.
23

Modeling And Development Of A MEMS Device For Pyroelectric Energy Scavenging

Mostafa, Salwa 01 August 2011 (has links)
As the world faces an energy crisis with depleting fossil fuel reserves, alternate energy sources are being researched ever more seriously. In addition to renewable energy sources, energy recycling and energy scavenging technologies are also gaining importance. Technologies are being developed to scavenge energy from ambient sources such as vibration, radio frequency and low grade waste heat, etc. Waste heat is the most common form of wasted energy and is the greatest potential source of energy scavenging. Pyroelectricity is the property of some materials to change the surface charge distribution with the change in temperature. These materials produce current as temperature varies in them and can be utilized to convert thermal energy to electrical energy. In this work a novel approach to vary temperature in pyroelectric material to convert energy has been investigated. Microelectromechanical Systems or MEMS is the new technology trend that takes advantage of unique physical properties at micro scale to create mechanical systems with electrical interface using available microelectronic fabrication techniques. MEMS can accomplish functionalities that are otherwise impossible or inefficient with macroscale technologies. The energy harvesting device modeled and developed for this work takes full benefit of MEMS technology to cycle temperature in an embedded pyroelectric material to convert thermal energy from low grade waste heat to electrical energy. Use of MEMS enables improved performance and efficiency and overcomes problems plaguing previous attempts at pyroelectric energy conversion. A Numerical model provides accurate prediction of MEMS performance and sets design criteria, while physics based analytical model simplifies design steps. A SPICE model of the MEMS device incorporates electrical conversion and enables electrical interfacing for current extraction and energy storage. Experimental results provide practical implementation steps towards of the modeled device. Under ideal condition the proposed device promises to generate energy density of 400 W/L.
24

Experimental study of the response of semiconductor detectors for EDXRF analysis

Valaparla, Sunil K. January 2009 (has links)
Thesis (M.S.)--University of Texas at El Paso, 2009. / Title from title screen. Vita. CD-ROM. Includes bibliographical references. Also available online.
25

Preparo, caracterização e aplicação do compósito PTCa (Titanato de chumbo modificado com cálcio)/PEEK (Poliéter éter cetona) como sensor de radiação

Estevam, Giuliano Pierre [UNESP] 15 December 2008 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:30:32Z (GMT). No. of bitstreams: 0 Previous issue date: 2008-12-15Bitstream added on 2014-06-13T20:40:35Z : No. of bitstreams: 1 estevam_gp_dr_ilha.pdf: 1286143 bytes, checksum: 9434d98559bc4397efde69672bf77fe5 (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Apresenta-se nesse trabalho a preparação, caracterização e aplicação de um compósito na forma de filme com três concentrações diferentes de cerâmica, objetivando observar seu comportamento quando submetido a radiação ionizante (raios X) e não ionizante (infravermelho). Os compósitos são constituídos da cerâmica titanato de chumbo modificado com cálcio (PTCa) imersa em uma matriz polimérica constituída de poliéter éter cetona (PEEK). Os filmes foram obtidos por prensagem a quente. O compósito foi caracterizado com a medida do coeficiente piezoelétrico (d33), variando a concentração de cerâmica, a temperatura de polarização, a intensidade de campo aplicado e o tempo de polarização. Posteriormente, foi medido o coeficiente piroelétrico, perda dielétrica e permissividade dielétrica, para as três concentrações de cerâmica proposta. Para a amostra com 60% de cerâmica foi determinado a figura de mérito piroelétrica (FOM) e finalmente, nessa fase de caracterização, foi determinado o campo coercivo e a polarização remanescente através da curva de histerese ferroelétrica. Os resultados obtidos revelaram que a atividade piezo e piroelétrica do compósito são compatíveis com outros compósitos existentes e cerâmicas. Após a caracterização, o compósito foi submetido à radiação infravermelha próximo e à radiação X na faixa de ortovoltagem. Os resultados encontrados revelaram que o compósito responde na faixa de radiação ionizante e não ionizante revelando uma opção interessante como sensor. / The present work is regarding to preparation and characterization of a ceramic/polymer composite film with three different ceramic loadings. The target was to observe the composite behavior when ionizing (X-ray) and non-ionizing (infrared) radiations was applied on it. The composites were made of calcium modified lead titanate (PTCa) ferroelectric ceramic immersed in poly(ether-ether-ketone) (PEEK) polymer matrix by hot pressing the powders mixture. Characterization was made using the longitudinal piezoelectric coefficient (d33) measurement as a function of ceramic content, poling temperature, poling electric field and poling time. Pyroelectric coefficient, dielectric permittivity and dielectric loss, coercive field and remanent polarization were also measured. The pyroelectric figure of merit (FOM) for sample with 60 vol% of ceramic was determined. The values of piezo and pyroelectric coefficient obtained for this composite indicates that it is comparable with other composites reported in literature. The application of the composite as thermal transducer for near infrared and X-ray radiation showed a real possibility to use PTCa/PEEK composite film as radiation detector in a wide range of energy.
26

Récupération de micro-énergie renouvelable par couplage multiphysique des matériaux : applications aux bâtiments / Ambient energy harvesting based on coupling effects in materials : applications in buildings

Zhang, Qi 14 April 2011 (has links)
L'objet de l'étude menée vise la récupération de micro-énergie renouvelable au moyen des matériaux piézoélectriques, pyroélectriques et thermoélectriques. Cette étude porte sur l'optimisation de trois aspects de la récupération de micro-énergie : (i) le couplage entre le générateur et l'environnement, (ii) l'efficacité de conversion d'énergie par le choix adéquat de matériaux et (iii) l'extraction de l'énergie électrique. Des études expérimentales et théoriques ont été menées en premier lieu dans des conditions de laboratoire pour une meilleure compréhension des phénomènes de récupération de micro-énergie, puis dans des conditions réelles pour vérifier les performances effectives des dispositifs réalisés. Concernant l'effet thermoélectrique, une nouvelle méthode de récupération de micro-énergie ambiante et solaire est présentée. Cette méthode utilise les générateurs thermoélectriques et les effets des chaleurs sensibles et latentes des matériaux à changement de phase pour produire des micro-énergies aussi bien de jour que de nuit. Une puissance maximale de 1Wm-2 avec un matériau thermoélectrique (Bi2Te3) a été obtenue. Concernant l'effet pyroélectrique, l'effet des variations des vitesses du vent au cours du temps est exploité. Une variation temporelle maximale de la température de 16°C/mn est disponible, ce qui a conduit à une puissance moyenne récupérée de 0.6mWm-2. Concernant l'effet piézo-électrique, une structure mécanique de type harmonica a été développée ainsi qu'une estimation des efforts d'interaction fluide-structure. Le prototype développé fonctionne à partir des vitesses du vent de 2ms-1 et génère une production d'énergie électrique de 8.9mWm-2. A titre d'illustration, une application typique a été présenté (refroidissement de panneau photovoltaïque). Elle montre une augmentation de la production d'électricité autour de 10%. L'application met en évidence l'utilisation des micro-énergies renouvelables au service de la production de macro-énergie. / The aim of this study is to investigate ambient energy harvesting with coupling effect of piezoelectric, pyroelectric and thermoelectric materials. Three basic problems lie in an energy harvesting process with these coupling effects: (i) design and optimize a structure which is able to accumulate the micro-power from the energy source and transform it into the favorable loading on the active material, (ii) improve the energy conversion efficiency according to the suitable choice of material properties and (iii) develop an energy harvesting circuit which is able to improve the energy conversion efficiency. The developed approach was experimental and numerical studies at first in laboratory conditions for deep understanding of energy harvesting process and then in outside conditions for verifying actual performance of the realized devices. On the thermoelectric coupling effect, a new method of harvesting solar and ambient energy is presented. The method is based on thermoelectric and both sensitive and latent heat effects for energy harvesting day and night. A maximum power generation of 1Wm-2 is achieved with thermoelectric material (Bi2Te3). On the pyroelectric effect, the inherent fluctuation with time of the natural wind speed was used. A maximum time variation of temperature of 16°C/minute was achieved which corresponds to an average power of 0.6mWm-2. On the piezoelectric effect, a mechanical structure which is enlightened from harmonica was developed and dynamic fluid-structure problems were addressed. The developed prototype begins to work for wind speed around 2ms-1 and a maximum power generation of 8.9mWm-2 was achieved. Ultimately, a typical building application (automatic control of water cooling photovoltaic panel) with the harvested solar thermal energy is introduced. The proposed application highlights an example of using harvested micro-energy to improve macro-energy production (around 10%).
27

FT-infrared and pyroelectric studies on calix[8]arene Langmuir-Blodgett films

Oliviere, Pierre Anthony Rees January 2001 (has links)
Pyroelectric activity is exhibited by materials which possess a spontaneous temperature-dependent electric polarisation. These materials generate a current as their temperature is changed. Many classes of organic materials exhibit pyroelectric activity but only if processed in such a way that a non-centrosymmetric arrangement of dipole results. When deposited as alternate layers by the Langmuir-Blodgett (LB) technique a macroscopically polar assembly is formed. To date, the best performance has been achieved by alternately depositing two materials, one containing acid groups and the other containing amine groups. Calixarenes are one family of materials which are particularly good vehicles for the acid and amine groups. Alternate layer LB films of acid- and amine-substituted calixarenes have high pyroelectric coefficients and form extremely robust films. Fourier transform infrared (FTIR) spectroscopy is a useful tool in examining the properties of thin film samples. Using the FTIR techniques of attenuated total reflection (ATR) and reflection-absorption infrared spectroscopy (RAIRS) it is possible to study the behaviour of the acid and amine groups within the pyroelectric samples. This thesis describes the pyroelectric properties of a series of calix[8]arenes. The dependence of the pyroelectric coefficient on temperature, film thickness and substituent chain length is analysed. The infrared spectra show that the acid and amine groups interact by proton transfer but also that the remaining acid groups form either facing dimers with the amine or sideways dimers between themselves. The spectra do not change with temperature. This demonstrates that the films are thermally stable. Additionally, this invariance shows that the pyroelectric activity in these films does not arise from a change in the proton transfer as has been previously postulated. Theoretical calculations undertaken predict that the source of the dipole change required for the level of pyroelectric activity seen is likely to be a change in distance between the acid and amine groups. Further observations, quantitatively examined by curve fitting techniques, show that the greater the number of proton-transferred pairs, the lower the pyroelectric coefficient. Thus, only the temperature-dependent separation of the acid and amine pairs which have not undergone proton transfer is responsible for the pyroelectric activity in these systems.
28

Pyroelectric and electrocaloric effects in hafnium oxide thin films

Mart, Clemens 11 May 2021 (has links)
The material class of hafnium oxide-based ferroelectrics adds an unexpected and huge momentum to the long-known phenomenon of pyroelectricity. In this thesis, a comprehensive study of pyroelectric and electrocaloric properties of this novel ferroelectric material class is conducted. hafnium oxide is a lead-free, non-toxic transition metal oxide, and abundant in the manufacturing of semiconductor devices. The compatibility to existing fabrication processes spawns the possibility of on-chip infrared sensing, energy harvesting, and refrigeration solutions, for which this dissertation aims to lay a foundation. A screening of the material system with respect to several dopants reveals an enhanced pyroelectric response at the morphotropic phase boundary between the polar orthorhombic and the non-polar tetragonal phase. Further, a strong pyroelectric effect is observed when applying an electric field to antiferroelectric-like films, which is attributed to a field-induced transition between the tetragonal and orthorhombic phases. Primary and secondary pyroelectric effects are separated using high-frequency temperature cycles, where the effect of frequency-dependent substrate clamping is exploited. The piezoelectric response is determined by comparing primary and secondary pyroelectric coefficients, which reproduces the expected wake-up behavior in hafnium oxide films. Further, the potential of hafnium oxide for thermal-electric energy conversion is explored. The electrocaloric temperature change of only 20 nm thick films is observed directly by using a specialized test structure. By comparing the magnitude of the effect to the pyroelectric response, it is concluded that defect charges have an important impact on the electrocaloric effect in hafnium oxide-based ferroelectrics. Energy harvesting with a conformal hafnium oxide film on a porous, nano-patterned substrate is performed, which enhances the power output. Further, the integration of a pyroelectric energy harvesting device in a microchip for waste heat recovery and more energy-efficient electronic devices is demonstrated. High dielectric breakdown fields of up to 4 MV/cm in combination with a sizable pyroelectric response and a comparably low dielectric permittivity illustrate the prospect of hafnium oxide-based devices for future energy conversion applications.
29

Pyroelectric Properties of Ferroelectric Lanthanum Bismuth Titanate Thin Films

Palan, Rohit Chandulal 11 October 2001 (has links)
No description available.
30

PVDF Detectors in Supersonic Molecular Jet Experiments

Saftien, Paul 21 July 2023 (has links)
Im Rahmen dieser Arbeit wurden verschiedene Teilchendetektoren zur Verwendung in einem gepulsten Überschallmolekularstrahlexperiment entworfen und hergestellt. In den hier durchgeführten Experimenten kollidiert ein Molekularstrahl mit einer sensitiven Detektoroberfläche, nämlich einer Polyvinylidenfluorid(PVDF)-Folie. Da PVDF sowohl pyroelektrisch wie auch piezoelektrisch ist, entstehen durch die Kollision der Molekularstrahlteilchen auf der Folie Oberflächenladungen. Vorteile von PVDF-Detektoren sind die hohe Effizient der Detektion, die Detektion von neutralen Atomen und Molekülen (eine Ionisierung der zu detektierenden Teilchen ist nicht notwendig), ein einfaches und leicht anzupassendes Detektordesign und außerdem eine schnelle Antwortzeit (im Mikrosekundenbereich). Da nur Ladungen im Bereich von wenigen Pikocoulomb generiert werden, sind verschiedene Verstärker getestet worden. Zur Analyse und Beschreibung des detektierten Signals wird der piezoelektrische Anteil durch ein Materialmodell in Verbindung mit einem schwingenden System, nämlich der erzwungenen Schwingung einer gedämpften Kreismembran, beschrieben. Der pyroelektrische Anteil wird durch einen Energieaustausch beschrieben. Durch die Ausnutzung des pyroelektrischen sowie des piezoelektrischen Effektes können zusätzliche wichtige Informationen wie zum Beispiel der Restitutionskoeffizient oder der Energieakkommodationkoeffizient experimentell erhalten werden. Zur Demonstration der Anwendungsmöglichkeiten sind Detektoren in verschiedenen Größen zur Messung von unterschiedlichen Strahleigenschaften verwendet worden. Untersucht wurde dabei die Strahlgeschwindigkeit von verschiedenen Edelgasen über einen großen Stagnationsdruck- und Stagnationstemperaturbereich. Außerdem wurden Strahlprofile zur Bestimmung der Strahldichte gemessen und mathematisch beschrieben. Zusätzlich wird eine Methode zur Bestimmung der Strahltemperatur mit Hilfe der Strahldichte und der Strahlgeschwindigkeit vorgestellt. / In this study, different particle detectors with a foil of polyvinylidene difluoride have been designed and built for use in a pulsed supersonic molecular jet experiment. Here, the molecular jet collides with the sensitive detector area and generates a charge. This generated charge is caused by the piezo- and the pyroelectric effect. Advantages of polyvinylidene difluoride detectors are a high detection efficiency, the detection of neutral atoms or molecules --- no ionization is required, a simple setup which can be easily incorporated in an existing experiment, an easy adjustment of the detector design because the shape and size can be changed easily, and a fast response-time in the sub-microsecond regime. Because the amount of charges generated is in the order of some picocoulomb, different amplifiers are used. In this analysis of the detected signal, the piezoelectric contribution is defined by the constitutive equations of piezoelectricity, which are used in combination with the concept of a driven damped circular membrane in order to obtain an analytic solution. The pyroelectric contribution is described via the exchanged energy. Because both the piezo- and the pyroelectric effects can be exploited, valuable additional information such as the coefficient of energy accommodation or the coefficient of restitution can be determined experimentally. In order to demonstrate the application possibilities of polyvinylidene difluoride detectors, detectors of different sizes are used as a local jet probe to determine different jet properties. The mean velocities of different rare gases for a wide range of source conditions are determined. Density profiles of various supersonic jets are measured and described mathematically in detail. In addition, both quantities, the velocity and the density, are used to determine the temperature of the supersonic jet.

Page generated in 0.0268 seconds