Spelling suggestions: "subject:"pacific coast"" "subject:"pacific boast""
1 |
Marine geology of Astoria deep-sea fanNelson, C. Hans (Carlton Hans), 1937- 13 February 1968 (has links)
Graduation date: 1968
|
2 |
Sources, dispersal, and contributions of fine-grained terrigenous sediments on the Oregon and Washington continental slopeKrissek, Lawrence A. 13 April 1982 (has links)
Holocene hemipelagic deposition of terrigenous silts and clays
dominates sedimentation on most of the Oregon and Washington continental
slope. The sources of these sediments, the mechanisms causing sediment
dispersal, and the relative contributions of the various continental
sources to the marine deposits have been investigated using quantitative
mineral and geochemical data for the 2-20 μm and the <2 μm size fractions.
In the 2-20 μm size fraction, material derived from the Klamath
Mountains and the California and Washington Coast Ranges contains
chlorite and illite, but only Klamath material contains hornblende.
Columbia River material lacks chlorite, and the Oregon Coast Range
source is dominated by smectite. In the <2 μm fraction, source area
compositions are less distinctive due to the ubiquity of smectite, but
the northern and southern sources again contain both chlorite and
illite. Regional and local mineralogic and textural variations in the
fluvial sediments reflect geologic and geographic changes between
drainage basins. Amorphous material is a minor component in the 2-20 μm
fraction of the fluvial sediments, but may form 25-50% of the <2 μm
fraction in some source areas.
Sediments derived from all source areas are transported north
and northwestward across the margin, either by a poleward-flowing
undercurrent along the slope, by wind-driven surface currents on the
shelf and associated turbid layers on the slope, or by a combination
of the two processes. Columbia River <2 μm material may also be carried
southward along the shelf and upper slope by summer surface currents.
The poleward undercurrent (an eastern boundary undercurrent) appears to
have limited sedimentological significance when compared to the role
of the western boundary undercurrent in sediment transport and deposition
on the continental slope and rise of the eastern United States.
Linear programming has been applied successfully to estimate source
area contributions to the 2-20 μm marine sediments. The influence of
each source is largest in proximal environments, and the contribution
estimates indicate that material derived from each source area is
transported northward along the margin. Similar estimates for the
<2 μm material are considered unreliable because of internal inconsistencies
and the uniform nature of the <2 μm compositions used in the
modelling. The contributions have been used to calculate a sediment
budget for the 2-20 μm fraction. This budget indicates that the mass
accumulating on the entire slope within the study area contains 47%
Columbia River, 32% Klamath Mountain, and 21% California Coast Range
material in the 2-20 μm fraction, and demonstrates the importance of
multiple sediment sources and sediment mixing in the formation of
hemipelagic sediments on the continental margin. / Graduation date: 1982
|
3 |
Holocene sedimentation and potential placer deposits on the continental shelf off the Rogue River, OregonChambers, David Marshall 25 September 1968 (has links)
Changes in sea level during the past 20,000 years are recorded
in sediments taken from the continental shelf off the Rogue River,
Oregon. Sea level has risen approximately 125 m. during the
Holocene (Curray, 1965) and the general transgression has been
interrupted by several stillstands and minor regressions.
Box core samples taken in the area of investigation depict the
nature of sedimentation during the last rise of sea level as well as
present-day equilibrium sediment relationships. Three sediment
facies, a recent fine-grained mud, a basal transgressive sand, and
an intermediate sediment, believed to be a mixture of the other two,
are defined on the shelf on the basis of textural parameters. The
mud facies dominates surface sediment on the central shelf while
the sand facies is the most commonly exposed on both the inner and
outer shelf.
The percentage of sand generally increases with depth in the
box cores, often producing a change in sediment facies with depth and
demonstrating the transgressive nature of the sediments. Grain-size
analysis of the sand fraction of the offshore sediments reveals that
offshore sands are finer-grained and better sorted than those occurring
on the present beaches. The offshore sands most likely
represent relict nearshore deposits and not ancient beach sands
which would occur lower in the sediment sequence.
High concentrations of heavy minerals are found in the sand
fraction of the offshore sediments as well as in beach sands in the
area. Brief stillstands of sea level may be reflected in depths where
the offshore sands contain anomalously high percentages of heavy
minerals.
Opaque minerals, chiefly magnetite, occur in placer accumulations
on the present beaches and high percentages of these minerals
in the offshore sands may be indicative of submerged beach environments
associated with stillstands of sea level. The magnetite may be
concentrated in sufficient quantity in the placers to produce detectable
magnetic anomalies, several of which have been recorded in the area.
Other lines of evidence used to determine the depths of
probable stillstands of sea level are bathymetric relief, the distribution
of shallow water fauna in sediments from deep water, and the
distribution of rounded gravels on the shelf. A compilation of the
several lines of evidence suggests several stillstands of sea level
associated with the Holocene transgression occurring at depths of
18, 29, 47, 71, 84, 102, and 150 meters. / Graduation date: 1969
|
4 |
Sedimentary texture--a key to interpret deep-marine dynamicsAllen, David William 19 September 1969 (has links)
The processes responsible for transporting and depositing thick
sections of coarse-grained terrigenous clastics on the abyssal floor
and for forming associated sedimentary structures are still conjectural.
Many workers attribute coarse deep-sea sediments and their
probable lithified equivalent, the graywackes of flysch deposits to
some type of density movement.
Deductions concerning the processes operating in a density flow
generally are made from flume studies--in which an artificial situation
may develop, or from lithified units--where the magnitude of
post-depositional change is unknown. Both approaches contribute to
our knowledge, but the unconsolidated elastics themselves should
contain a unique key to understanding the dynamics of abyssal sedimentation.
To test this theory, divisions of parallel lamination, found in
deep-sea sand and silt, were selected for analysis. Since individual
laminae closely approach discrete populations of particles assembled
under contrasting conditions, their use carries environmental sampling
to its practical limits.
Northeast Pacific sediments of late Pleistocene and Holocene
age, from deep-sea channel and abyssal plain environments, and
representing two or three provenances were studied. A total of 115
light-colored and 84 dark-colored laminae were sampled from eight
sequences at five locations. Samples averaged about 0.8 gram and
were quantitatively processed using quarter-phi calibrated sieves and
decantation techniques. Statistical evaluation of the procedure shows
better than 95 percent sample recovery, and indicates that textural
variance between laminae is significantly greater than within-sample
variance.
The classic concept of density transport--that coarsest material
is carried by the nose of the current, and that clastic size grades tail-ward
and upward in a uniformly decreasing manner--is not substantiated
by moment measures, sand-silt-clay percentages or factor analysis
of grain-size distributions, at least during deposition of the
coarse division of parallel lamination.
Coarse abyssal lamination develops within a narrow range of
current velocity, the limits of which are defined texturally. Absolute
velocity values for these limits can only be related, at the present
time, to the few flume or in situ bottom current measurements
available. Texture indicates that while the total amount of sand
carried in suspension varies, lamination does not begin to form
until a current is essentially depleted of all material coarser than
fine sand--establishing an upper competency limit. At that time,
coarse suspended material is distributed throughout the flow mostly
in large eddies or vortices whose velocities are estimated on the
order of about one meter/sec. Mean current velocity must be sufficient
to maintain a dispersed traction carpet without deformation of
bedform into ripples. This is postulated at about 50 cm/sec.
A current model, based on textural evidence, is proposed to
account for lamination. It is suggested that the critical stage in the
formation of coarse abyssal lamination occurs while sediment is
being dragged along the bottom as bedload. The flowing clastic traction
carpet acquires kinetic energy as the current bypasses material
lost from suspension. In turn, this energy results in grain shear.
When the concentration of granular material in traction is large, it
dissipates the energy of bottom shear mostly in collision contacts
between gliding grains. The dispersive stresses developed tend to
maintain grain separation and prevent settling. Eventually, turbulence
in seawater entrapped between grains is suppressed and the net
path of grans impelled by repeated collisions becomes quasi-laminar.
Within this quasi-laminar traction system, dispersive pressure
causes some migration of finer sizes toward the base of the carpet
and a concentration of coarser grains in the upper bedload. As new
material is introduced in large quantities from suspension, the zone
of internal shear--the base of the moving carpet--is displaced progressively
upward. As it passes, sediment compacts to a fraction
of its dispersed thickness and a population of grains with a slightly
finer size distribution than the carpet load comes to rest. This is
buried by new deposition and a densely-packed, dark layer continues
to accrete upward as long as a moving traction carpet is sustained
and a dense rain of clastics is contributed from suspension.
When a sand-laden eddy impinges on the bottom, it releases its
coarsest load into traction and the dark layer then accreting increases
significantly in grains larger than 44 microns. Any eddy, whether
laden or not, on striking bottom adds to, or deducts its velocity from
the velocity of the traction carpet and either increases or decreases
bottom shear. Additional impulse given to tractive shear by eddies
merely results in more effective size sorting.
However, an eddy whose velocity of rotation is opposed to current
movement may reduce shear below the critical necessary to
maintain a thick carpet by dispersive pressure, The dispersed carpet
collapses and instantaneously ceases moving. This less-densely
packed layer has a slightly higher sand content than the accreted
material below. When partially dried or weathered, alternate layers
exhibit different moisture retention properties--the less-porous,
accreted layers appearing dark and the more loosely packed layers
appearing light. / Graduation date: 1970
|
5 |
A seismic refraction study of the Monterey Deep Sea Fan and a comparison of velocity structures among fan subunitsDwan, Shufa F. 10 January 1986 (has links)
A deep source-receiver seismic refraction experiment was conducted
on the upper part of the Monterey Deep Sea Fan. The aim of this thesis is
to construct the velocity structure of the upper Monterey Fan and to examine
the lateral seismic velocity variations among the upper, middle and lower
fan subunits. Using primary waves and whispering gallery phases (the
multiply-reflected refraction waves), the sediment velocity structure was
modeled by the tau-zeta travel time inversion process. The changes in
velocity gradients with depth of the upper Monterey Fan are
morphologically similar to that found on both the Central Bengal Fan and
the Nicobar Fan, an abandoned lower fan of the Bengal Fan Complex. The
velocity gradient of the upper Monterey Fan at depth, 0.59 s⁻¹ is
significantly lower than both the middle Bengal Fan (0.68 s⁻¹) and the
Nicobar Fan (0.81 s⁻¹). The upper fan subunit, which is closer to its
sediment source, is characterized by higher porosities caused primarily by
a higher sedimentation rate than the lower fan subunits. Since seismic
velocity is inversely related to porosity, the upper fan subunit should have
lower velocity gradients and seismic velocities than the other fan subunits.
If porosity and velocity variations exist, then these variations can be used to
constrain various models of deep sea fan formation. No definite conclusion
can be drawn at this time due to a fault within 1 km of the Nicobar Fan site;
however, a systematic velocity variation pattern of deep sea fans is
revealed.
Some portions of the Monterey Fan data contain refracted waves
which have bottomed within the underlying acoustic basement structure.
The entire velocity structure was solved by both the general and the
"stripping" solving schemes. The results of basement structure show a
velocity ranging from 3.4 to 5.8 km/s indicating that the uppermost part may
be pre-existing continental rise sediments. / Graduation date: 1986
|
6 |
Contributions to the life history and ecology of the marine brown alga Phaeostrophion irregulare S. et G. on the Pacific coast of North AmericaMathieson, Arthur Curtis January 1965 (has links)
Until recently, few collections of the marine brown alga Phaeostrophion irregulare S. et G. had been made, little was known of its ecology, and virtually nothing of its life history. The main objectives of this investigation were to study the life history and major factors influencing growth and distribution of this species.
Laboratory and field investigations were conducted during 1961-196i4. Life history studies were performed in the laboratory by culturing zoospores under constant environmental conditions.
The growth of cultured germlings and the photosynthetic response of the laminate plants from the field were recorded under different temperatures, salinities, nutrients, and light conditions. The tolerance of laminate plants and germlings to extremes of temperature, salinity, and desiccation was also determined in the laboratory. The growth and reproduction of in situ plants at Glacier Point, British Columbia were correlated with temperature, salinity nutrients, tides, sand and various meteorological conditions at that locality. Life history studies were conducted at Glacier Point by observing the succession of germlings on denuded transects and by transplanting laboratory cultured germlings into the field.
The laminate thallus of P. irregulare sometimes bears both unilocular and plurilocular sporangia at the same time. Previously, only unilocular sporangia were reported in this plant. Zoospores from the unilocular sporangia (unispores) and plurilocular sporangia (plurispores) develop identicallys, and each is capable of producing a laminate thallus directly or after a succession of filamentous and discoid plethysmothalli. The "direct-type" of development of the zoospores (unispores) from the unilocular sporangium is probably due to a suppression of meiosis in the unilocular sporangium. Morphological and cultural evidence is presented to support this hypothesis, although no cytological evidence was obtained.
At Glacier Point, P. irregulare is restricted to sandy areas, and the greatest number of plants occur where large fluctuations of sand occur annually. The plants are regularly buried four to six months per year, and their growth and reproduction is limited to the period when sand is absent. Competition with other plants probably accounts for the occurrence of P. irregulare in sandy areas, since it will grow in rocky areas if other algae are eliminated.
The period of maximum growth (February to April) is associated with a corresponding increase in light intensity and water temperature in this area. After April, growth in non-tide pool populations decreases much more rapidly than growth of tide pool populations, because of the increased exposure of plants to desiccation during daylight. A period of decreased growth for tide pool plants occurs in May to June; this decrease probably results from high surface water temperatures, high light intensities, or a combination of both.
The morphology of the laminate plants of P. irregulare is extremely variable and the range of variability observed at Glacier Point overlaps that described for P. australe from Callifornia. P. australe is considered to be a growth form of P. irregular, and is therefore a taxonomic synonym of P. irregulare, Distributional evidence also supports this conclusion.
The known range of P. irregulare extends from Point Conception, California to Khantaak Island, near Yakutat, Alaska. Temperature is considered to be the primary factor controlling its gross distribution. Nitrate and phosphate deficiency may partially restrict the distribution of P. irregulare south of Point Conceptions, California. The sporadic distribution of P. irregulare on the Pacific Coast is correlated with the presence of sand, and local conditions are most important in determining its regional distribution. Experimental studies show that P. irregulare is well adapted to a sandy habitat, and several features are discussed to explain this adaptation.
The laminate plants and germlings of P. irregulare tolerate a wider range in temperature and salinity in culture than that to which they are subjected in nature. However, the laminate plants and germlings of P. irregulare are very sensitive to desiccation; under experimental conditions both tolerate less desiccation than that to which they are subjected under natural conditions. / Science, Faculty of / Botany, Department of / Graduate
|
7 |
Macroscale to local scale variation in rocky intertidal community structure and dynamics in relation to coastal upwellingFreidenburg, Tess L. 24 May 2002 (has links)
Understanding how large-scale processes (>100 kms) influence ecological
communities is currently a major focus in ecology. In marine systems, coastal
upwelling, a large-scale oceanographic process in which surface water pushed
offshore by winds is replaced by cold, nutrient-rich water from depth, appears to
cause variation in rocky intertidal communities. Along the central Oregon coast
upwelling occurs intermittently during the summer while on the southern coast it
begins earlier in the spring and is less variable throughout the summer.
Coastal upwelling can affect rocky intertidal communities by altering the
delivery of nutrients, larvae, and phytoplankton. I conducted three studies on both
the southern and central Oregon coast to understand how differences in upwelling
affect rocky intertidal community structure and dynamics. In the first study, I
examined the recruitment and growth rates of sessile invertebrates (mussels and
barnacles). Recruitment of both mussels and barnacles, and growth of mussels were
consistently higher on the central Oregon coast than the southern coast.
Upwelled water is nutrient-rich, so differences in upwelling are likely to
affect growth rates of macroalgae. In the second study, I tested this hypothesis by
monitoring the growth of two species of intertidal kelp at both central and southern
coast sites. During El Ni��o years, when upwelling is sharply reduced on the central
Oregon coast, algae may fare better at sites on the southern coast where upwelling
is less affected. However, during years when upwelling is strong all along the
coast, nutrient limitation does not appear to differentially affect macroalgal growth
rates.
Finally, in the third study, I examined the influence of upwelling on the
interactions between microalgal primary producers and herbivorous limpets. I
conclude that this interaction is complex and varies both within and between
upwelling regions.
My research suggests that a transition in upwelling from weak and sporadic
on the central Oregon coast to stronger and more persistent on the southern Oregon
coast drives the striking differences in rocky intertidal community structure and
dynamics between these areas. / Graduation date: 2003
|
8 |
Radiolarian microfauna in the northern California current system : spatial and temporal variability and implications for paleoceanographic reconstructionsWelling, Leigh A. 19 November 1990 (has links)
Graduation date: 1991
|
9 |
A geological reconnaissance of Bowie SeamoutHerzer, Richard Howard January 1970 (has links)
Bowie Seamount, a submerged volcano situated off the west coast of Canada at 53° 18; N, 135° 39' W, has a relief of 10,000 ft. and comes to within 100 ft. of the ocean surface. It is made up of a series of intersecting ridges which together give the mountain an overall northeast - southwest elongation. It appears to be a combination central and fissure type volcano which has been built up over a system of intersecting fractures in the oceanic crust. Two terraces form the flattened summit of the volcano at approximate depths of 45 and 130 fathoms. These are thought to be the remains of platforms produced by combined wave erosion and shallow-water vulcanism during late Quaternary time when sea level was lower than it is today. The last phase of volcanic activity on the summit occurred after the formation of the upper terrace no more than 18,000 years ago. Samples dredged from the upper half of the volcano include: pillow fragments, fragments of non-pillowed flows, pillow breccias, bombs, tuffs, ash, and unsorted tephra. The rocks are mainly alkali olivine basalts, accompanied by rare andesites which, presumably, were derived by differentiation of the basaltic magma. Feldspathic and gabbroic inclusions, many of which appear to be cumulates, are common in the basalt. Ice-rafted rocks are rare on the summit of Bowie Seampunt but are common on its nearest neighbour - Hodgkins Seamount. A ferro-manganese deposit, apparently over 1 million years old, that exists on the summit of Hodgkins Seamount, suggests that this peak is relatively much older than the summit area of Bowie Seamount. Palagonite appears to form as the initial phase of weathering of glassy basalts in the area of study but the products of more advanced weathering are montraorillonite and zeolites. Rock fragments that have been rounded by chemical weathering are common. / Science, Faculty of / Earth, Ocean and Atmospheric Sciences, Department of / Graduate
|
10 |
Study of dinoflagellate cysts from recent marine sediments of British ColumbiaDobell, Patricia Elda Rose January 1978 (has links)
Viable cysts collected from natural sediments were induced to excyst. Ten cyst-theca relationships, first established elsewhere, were confirmed for British Columbia (B.C.). These were: Gonyaulax tamarensis, Protoperidinium aspidotum, P. claudicans, P. conicoides, P. conicum, P. cf. denticulatum, P. leonis, P. oblongum, and P. punctulatum. Five cyst-theca relationships were established for the first time: Peridiniopsis cf. hainanensis, Protoperidinium sp. nov., P. thorianum, and two apparently new species of Gonyaulax. P. pentagonum was found to have a cyst different from the cyst of this species in the Atlantic.
Forty-five samples from Recent sediments were collected along the coast of B.C. Twenty-three of the samples had very few cysts. Hidden Basin was the chief source of viable cysts for the excystment experiments.
Ten cyst-based taxa were described from the sediment samples.
These were: Operculodinium centrocarpum, the cyst of Scrippsiella
faeroense (= Micrhystridium bifurcatum), Spiniferites belerius, S.
bentori, S. bulloideus, S. elongatus, S. membranaceus, S. nodosum, and
S. ramosus. Tanyosphaeridium sp. has been recorded previously as the
cyst of Polykrikos schwarzi. Two new cyst-based taxa are described
for the first time. These are a cyst of Protoperidinium sp., and
Spiniferites "sp. A".
Cyst assemblages in the Recent sediments of B.C. were similar to many temperate estuarine and neritic areas. Some cysts which are characteristic of these areas in other regions, have not yet been found in B.C. The relative importance of some cysts also varies from that found in similar sediments elsewhere.
The dominance of Operculodinium centrocarpum in many of the cyst assemblages, including B.C., is a pattern typical of temperate estuarine conditions. Some cysts appear to be characteristically associated with fjord environments. Scrippsiella faeroense, for example, has been found in Norwegian fjords and Scottish sea lochs as well as some B.C. fjords and inlets. / Science, Faculty of / Botany, Department of / Zoology, Department of / Graduate
|
Page generated in 0.0512 seconds