Spelling suggestions: "subject:"parabolic equation,"" "subject:"parabolica equation,""
41 |
Analýza evolučních úloh s omezeným gradientem / Analysis of evolutionary problems with bounded gradientsHruška, David January 2019 (has links)
We study nonlinear evolutionary partial differential equations that can be viewed as a generalization of the heat equation where the temperature gradient is bounded but the heat flux is apriori only a measure. We consider this system in spatially periodic setting and use higher differentiability techniques to prove the existence and uniqueness of weak solution with integrable heat-flux for all values of the material parameter a. Under some more restrictive assumptions on a, we prove higher integrability of the heat flux. 1
|
42 |
Modélisation des sources de bruit d'une éolienne et propagation à grande distance / Modeling of wind turbine noise sources and propagation in the atmosphereTian, Yuan 15 February 2016 (has links)
L'objectif de ce travail est de modéliser les sources et la propagation atmosphérique du bruit généré par les éoliennes afin de mieux comprendre les caractéristiques de ce bruit à grande distance et d'aider les fabricants d'éoliennes et les développeurs de parc à respecter la réglementation. En couplant des modèles physiques de source aéroacoustique et de propagation, nous sommes capables de prédire les spectres de bruit, ainsi que la directivité et les modulations d'amplitude associées, pour différentes conditions atmosphériques. Le bruit aérodynamique large bande, à savoir le bruit d'impact de turbulence,le bruit de bord de fuite et le bruit de décrochage, est généralement dominant pour les éoliennes modernes. Le modèle analytique d'Amiet est choisi pour prédire le bruit d'impact de turbulence et le bruit de bord de fuite, en considérant plusieurs améliorations par rapport à la théorie initial : 1, une correction empirique pour l'épaisseur du bord d'attaque est introduite dans le calcul du bruit d'impact de turbulence ; 2, un modèle spectral des fluctuations de pression pariétale proposé récemment pour un écoulement avec gradient de pression défavorable est utilisé dans le calcul du bruit de bord de fuite. Ces modèles sont validés par comparaison avec des mesures de la littérature en soufflerie avec des profils fixes.Le modèle d'Amiet est ensuite appliqué à une éolienne complète pour prédire le bruit émis en champ proche. L'effet de la rotation des pales et l'effet Doppler sont pris en compte. On utilise d'abord des profils de vent constant sans turbulence, puis l'effet du cisaillement du vent et de la turbulence atmosphérique sont inclus à l'aide de la théorie de la similitude de Monin-Obukhov. De bons accords sont obtenus avec des mesures sur site éolien lorsque l'on considère à la fois les bruits de bord de fuite et d'impact de turbulence. On retrouve à l'aide du modèle les caractéristiques classiques du bruit des éoliennes, comme la directivité et les modulations d'amplitude. Des comparaisons avec un modèle semi-empirique montrent que le bruit de décrochage peut être significatif dans certains conditions.L'étape suivante consiste à coupler la théorie d'Amiet avec des modèles de propagation pour estimer le bruit à un récepteur en champ lointain. On étudie dans un premier temps un modèle analytique de propagation en conditions homogènes au-dessus d'un sol d'impédance finie. On montre que l'effet de sol modifie la forme des spectres de bruit, et augmente les modulations d'amplitude dans certains tiers d'octave. Dans un second temps, une méthode pour coupler le modèle de source à un code d'équation parabolique est proposée et validée pour prendre en compte les effets de réfraction atmosphérique. En fonction de la direction de propagation, les niveaux de bruit varient car l'effet de sol est influencé par les gradients de vent et car une zone d'ombre est présente dans la direction opposée au vent. On discute pour finir l'approximation de source ponctuelle à l'aide des modèles de propagation analytique et numérique. / The purpose of this work is to model wind turbine noise sources and propagation in the atmosphere in order to better understand the characteristics of wind turbine noise at long range and to help wind turbine manufacturers and wind farm developers meet the noise regulations. By coupling physically-based aeroacoustic source and propagation models, we are able to predict wind turbine noise spectra, directivity and amplitude modulation in various atmospheric conditions.Broadband noise generated aerodynamically, namely turbulent inflow noise, trailing edge noise and separation/stall noise, is generally dominant for a modern wind turbine. Amiet's analytical model is chosen to predict turbulent inflow noise and trailing edge noise, considering several improvements to the original theory: 1, an empirical leading edge thickness correction is introduced in the turbulent inflow noise calculation; 2, a wall pressure fluctuation spectrum model proposed recently for adverse pressure gradient flow is used in the trailing edge noise predictions. The two models are validated against several wind tunnel experiments from the literature using fixed airfoils.Amiet's model is then applied on a full-size wind turbine to predict the noise emission level in the near field. Doppler effect and blade rotation are taken into account. Cases with constant wind profiles and no turbulence are used first, then wind shear and atmospheric turbulence effects obtained from Monin-Obukhov similarity theory are included. Good agreements against field measurements are found when both turbulent inflow noise and trailing edge noise are considered. Classical features of wind turbine noise, such as directivity and amplitude modulation, are recovered by the calculations. Comparisons with a semi-empirical model show that separation noise might be significant in some circumstances.Next, Amiet's theory is coupled with propagation models to estimate noise immission level in the far-field. An analytical model for the propagation over an impedance ground in homogeneous conditions is studied first. The ground effect is shown to modify the shape of the noise spectra, and to enhance the amplitude modulation in some third octave bands. A method to couple the source model to a parabolic equation code is also proposed and validated to take into account atmospheric refraction effects. Depending on the propagation direction, noise levels vary because the ground effect is influenced by wind shear and a shadow zone is present upwind. Finally, the point source assumption is reviewed considering both the analytical and numerical propagation models.
|
43 |
Approche numérique et expérimentale de la propagation sonore en environnements océaniques tridimensionnels : application aux problèmes inverses / Numerical and experimental approach to sound propagation in three-dimensional oceanic environments : application to inverse problemsKorakas, Alexios 17 May 2010 (has links)
On s’intéresse dans ce travail à l’aspect tridimensionnel (3D) de la propagation sonore en milieux océaniques petits fonds dans le cadre des problèmes inverses. Les problèmes inverses en acoustique sous-marine se basent sur la modélisation bidimensionnelle (2D) de la propagation, ignorant ainsi les effets de réfraction horizontale, qualifiés d’effets 3D. Toutefois, la propagation acoustique en environnements petits fonds, tels le plateau continental, peut être affectée par des effets 3D, leur prise en compte nécessitant l’utilisation de modèles pleinement 3D. Une inversion basée sur un modèle 3D devient inabordable pour plus de deux paramètres à la fois en raison de temps CPU particulièrement élevés. L’objectif de ce travail est d’examiner l’importance des effets 3D sur la performance et la fiabilité des procédures d’inversion habituellement utilisées dans les problèmes de l’acoustique sous-marine. Pour cela, on se place dans un guide d’onde océanique à géométrie inclinée. Des expérimentations à échelle réduite sont menées afin d’identifier et d’interpréter les effets 3D. Une procédure d’inversion par champs d’onde adaptés, formulée dans un cadre Bayesien et basée sur la recherche exhaustive dans l’espace des paramètres, est élaborée. L’inversion s’effectue en comparant des données basse fréquence du champ acoustique, recueillies le long d’antennes linéaires verticales ou horizontales, aux répliques générées par des modèles d’équation parabolique 2D et 3D. Les paramètres importants sont identifiés au moyen d’une étude de sensibilité de la fonction de coût. Dans une étape préliminaire, la performance de l’inversion est étudiée, sur données synthétiques bruitées, dans un cas simple permettant l’utilisation de modèles 2D. Une stratégied’inversion en sous-espaces résultant en une réduction importante des temps CPU pour l’inversion, est examinée. L’inversion est ensuite abordée en présence d’un fond incliné. La possibilité et les limites d’une inversion basée sur un modèle 2D sont explorées. Cette approche, mise en œuvre sur données synthétiques, met en évidence la pertinence de l’utilisation de modèles 2D en champ relativement proche. Une inversion basée sur un modèle 3D n’étant alors nécessaire que pour la pente, des temps CPU raisonnables sont ainsi réalisés. En revanche, en champ lointain, nous sommes confrontés à un risque potentiel d’estimation erronée et le recours à une modélisation 3D devient nécessaire. / This work deals with the three-dimensional (3D) aspect of sound propagation in shallow-water oceanic environments with respect to inverse problems. Inverse problems in underwater acoustics are based on twodimensional (2D) modeling of sound propagation, hence ignoring the effects of horizontal refraction, referred to as 3D propagation effects. However, the acoustic propagation in shallow-water environments, like the continental shelf, may be affected by 3D effects requiring 3D modeling to be accounted for. An inversion based on a 3D model for more than two parameters at a time becomes prohibitive due to dramatically increased CPU times. The aim of this work is to investigate the importance of the 3D effects with respect to the performance and reliability of the inversion procedures typically applied in problems of underwater acoustics. To this aim, we focus on a wedge-shaped oceanic wave guide. Laboratory scale experiments of long-range acoustic propagation are performed to identify and interpret the 3D effects due to a sloping bottom, as predicted by numerical simulations. A matched-field inversion procedure implemented within a Bayesian framework and based on the exhaustive search over the parameter space is elaborated. The inversion is performed by comparing low frequency acoustic field data, collected along vertical or horizontal line arrays, to replica generated from 2D and 3D parabolic equation codes. The recoverable parameters are identified by means of a sensitivity study of the cost function. In a preliminary step, the inversion performance is investigated on noisy synthetic data in a simple waveguide where 2D codes apply. A ubspace inversion strategy providing significant reduction in CPU times is examined. The inversion in the presence of a sloping bottom is then considered. The feasibility and the limits of an inversion matching replica from a 2D code are explored. This approach, applied on synthetic data, highlights the relevance of using 2D codes at relatively short ranges. An inversion based on a 3D code is thus only needed for the slope, and reasonable CPU times are achieved. On the other hand, important mismatch might occur at farther ranges and 3D modeling is required.
|
44 |
Comportement asymptotique des solutions globales pour quelques problèmes paraboliques non linéaires singuliers / Asymptotic behavior of global solutions for some singular nonlinear parabolic problemsBen slimene, Byrame 15 December 2017 (has links)
Dans cette thèse, nous étudions l’équation parabolique non linéaire ∂ t u = ∆u + a |x|⎺⥾ |u|ᵅ u, t > 0, x ∈ Rᴺ \ {0}, N ≥ 1, ⍺ ∈ R, α > 0, 0 < Ƴ < min(2,N) et avec une donnée initiale u(0) = φ. On établit l’existence et l’unicité locale dans Lq(Rᴺ) et dans Cₒ(Rᴺ). En particulier, la valeur q = N ⍺/(2 − γ) joue un rôle critique. Pour ⍺ > (2 − γ)/N, on montre l’existence de solutions auto-similaires globales avec données initiales φ(x) = ω(x) |x|−(2−γ)/⍺, où ω ∈ L∞(Rᴺ) homogène de degré 0 et ||ω||∞ est suffisamment petite. Nous montrons ainsi que si φ(x)∼ω(x) |x| ⎺(²⎺⥾)/⍺ pour |x| grande, alors la solution est globale et asymptotique dans L∞(Rᴺ) à une solution auto-similaire de l’équation non linéaire. Tandis que si φ(x)∼ω(x) |x| (x)|x|−σ pour des |x| grandes avec (2 − γ)/⍺ < σ < N, alors la solution est globale, mais elle est asymptotique dans L∞(Rᴺ) à eᵗ∆(ω(x) |x|−σ). L’équation avec un potentiel plus général, ∂ t u = ∆u + V(x) |u|ᵅ u, V(x) |x |⥾ ∈ L∞(Rᴺ), est également étudiée. En particulier, pour des données initiales φ(x)∼ω(x) |x| ⎺(²⎺⥾)/⍺, |x| grande, nous montrons que le comportement à grand temps est linéaire si V est à support compact au voisinage de l’origine, alors qu’il est non linéaire si V est à support compact au voisinage de l’infini. Nous étudions également le système non linéaire ∂ t u = ∆u + a |x|⎺⥾ |v|ᴾ⎺¹v, ∂ t v = ∆v + b |x|⎺ ᴾ |u|q⎺¹ u, t > 0, x ∈ Rᴺ \ {0}, N ≥ 1, a,b ∈ R, 0 < y < min(2,N)? 0 < p < min(2,N), p,q > 1. Sous des conditions sur les paramètres p, q, γ et ρ nous montrons l’existence et l’unicité de solutions globales avec données initiales petites par rapport à certaines normes. En particulier, on montre l’existence de solutions auto-similaires avec donnée initiale Φ = (φ₁, φ₂), où φ₁, φ₂ sont des données initiales homogènes. Nous montrons également que certaines solutions globales sont asymptotiquement auto-similaires. Comme deuxième objectif, nous considérons l’équation de la chaleur non linéaire ut = ∆u + |u|ᴾ⎺¹u - |u| q⎺¹u, avec t ≥ 0 et x ∈ Ω, la boule unité de Rᴺ, N ≥ 3, avec des conditions aux limites de Dirichlet. Soit h une solution stationnaire à symétrie radiale avec changement de signe de (E). On montre que la solution de (E) avec donnée initiale λh explose en temps fini si |λ − 1| > 0 est suffisamment petit et si 1 < q < p < Ps = N+2/N−2 et p suffisamment proche de Ps. Ceci prouve que l’ensemble des données initiales pour lesquelles la solution est globale n’est pas étoilé au voisinage de 0. / In this thesis, we study the nonlinear parabolic equation ∂ t u = ∆u + a |x|⎺⥾ |u|ᵅ u, t > 0, x ∈ Rᴺ \ {0}, N ≥ 1, ⍺ ∈ R, α > 0, 0 < Ƴ < min(2,N) and with initial value u(0) = φ. We establish local well-posedness in Lq(Rᴺ) and in Cₒ(Rᴺ). In particular, the value q = N ⍺/(2 − γ) plays a critical role.For ⍺ > (2 − γ)/N, we show the existence of global self-similar solutions with initial values φ(x) = ω(x) |x|−(2−γ)/⍺, where ω ∈ L∞(Rᴺ) is homogeneous of degree 0 and ||ω||∞ is sufficiently small. We then prove that if φ(x)∼ω(x) |x| ⎺(²⎺⥾)/⍺ for |x| large, then the solution is global and is asymptotic in the L∞-norm to a self-similar solution of the nonlinear equation. While if φ(x)∼ω(x) |x| (x)|x|−σ for |x| large with (2 − γ)/α < σ < N, then the solution is global but is asymptotic in the L∞-norm toe t(ω(x) |x|−σ). The equation with more general potential, ∂ t u = ∆u + V(x) |u|ᵅ u, V(x) |x |⥾ ∈ L∞(Rᴺ), is also studied. In particular, for initial data φ(x)∼ω(x) |x| ⎺(²⎺⥾)/⍺, |x| large , we show that the large time behavior is linear if V is compactly supported near the origin, while it is nonlinear if V is compactly supported near infinity. we study also the nonlinear parabolic system ∂ t u = ∆u + a |x|⎺⥾ |v|ᴾ⎺¹v, ∂ t v = ∆v + b |x|⎺ ᴾ |u|q⎺¹ u, t > 0, x ∈ Rᴺ \ {0}, N ≥ 1, a,b ∈ R, 0 < y < min(2,N)? 0 < p < min(2,N), p,q > 1. Under conditions on the parameters p, q, γ and ρ we show the existence and uniqueness of global solutions for initial values small with respect of some norms. In particular, we show the existence of self-similar solutions with initial value Φ = (φ₁, φ₂), where φ₁, φ₂ are homogeneous initial data. We also prove that some global solutions are asymptotic for large time to self-similar solutions. As a second objective we consider the nonlinear heat equation ut = ∆u + |u|ᴾ⎺¹u - |u| q⎺¹u, where t ≥ 0 and x ∈ Ω, the unit ball of Rᴺ, N ≥ 3, with Dirichlet boundary conditions. Let h be a radially symmetric, sign-changing stationary solution of (E). We prove that the solution of (E) with initial value λ h blows up in finite time if |λ − 1| > 0 is sufficiently small and if 1 < q < p < Ps = N+2/N−2 and p sufficiently close to Ps. This proves that the set of initial data for which the solution is global is not star-shaped around 0.
|
45 |
Sub-gradient diffusion equations / Des équations de diffusion sous-gradientTa, Thi nguyet nga 18 December 2015 (has links)
Ce mémoire de thèse est consacrée à l'étude des problèmes d'évolution où la dynamique est régi par l'opérateur de diffusion de sous-gradient. Nous nous intéressons à deux types de problèmes d'évolution. Le premier problème est régi par un opérateur local de type Leray-Lions avec un domaine borné. Dans ce problème, l'opérateur est maximal monotone et ne satisfait pas la condition standard de contrôle de la croissance polynomiale. Des exemples typiques apparaît dans l'étude de fluide non-Neutonian et aussi dans la description de la dynamique du flux de sous-gradient. Pour étudier le problème nous traitons l'équation dans le contexte de l'EDP non linéaire avec le flux singulier. Nous utilisons la théorie de gradient tangentiel pour caractériser l'équation d'état qui donne la relation entre le flux et le gradient de la solution. Dans le problème stationnaire, nous avons l'existence de la solution, nous avons également l'équivalence entre le problème minimisation initial, le problème dual et l'EDP. Dans l'équation de l'évolution, nous proposons l'existence, l'unicité de la solution. Le deuxième problème est régi par un opérateur discret. Nous étudions l'équation d'évolution discrète qui décrivent le processus d'effondrement du tas de sable. Ceci est un exemple typique de phénomènes auto-organisés critiques exposées par une slope critique. Nous considérons l'équation d'évolution discrète où la dynamique est régie par sous-gradient de la fonction d'indicateur de la boule unité. Nous commençons par établir le modèle, nous prouvons existence et l'unicité de la solution. Ensuite, en utilisant arguments de dualité nous étudions le calcul numérique de la solution et nous présentons quelques simulations numériques. / This thesis is devoted to the study of evolution problems where the dynamic is governed by sub-gradient diffusion operator. We are interest in two kind of evolution problems. The first problem is governed by local operator of Leray-Lions type with a bounded domain. In this problem, the operator is maximal monotone and does not satisfied the standard polynomial growth control condition. Typical examples appears in the study of non-Neutonian fluid and also in the description of sub-gradient flows dynamics. To study the problem we handle the equation in the context of nonlinear PDE with singular flux. We use the theory of tangential gradient to characterize the state equation that gives the connection between the flux and the gradient of the solution. In the stationary problem, we have the existence of solution, we also get the equivalence between the initial minimization problem, the dual problem and the PDE. In the evolution one, we provide the existence, uniqueness of solution and the contractions. The second problem is governed by a discrete operator. We study the discrete evolution equation which describe the process of collapsing sandpile. This is a typical example of Self-organized critical phenomena exhibited by a critical slop. We consider the discrete evolution equation where the dynamic is governed by sub-gradient of indicator function of the unit ball. We begin by establish the model, we prove existence and uniqueness of the solution. Then by using dual arguments we study the numerical computation of the solution and we present some numerical simulations.
|
46 |
Etude d'équations aux dérivées partielles stochastiques / Study on stochastic partial differential equationsBauzet, Caroline 26 June 2013 (has links)
Cette thèse s’inscrit dans le domaine mathématique de l’analyse des équations aux dérivées partielles (EDP) non-linéaires stochastiques. Nous nous intéressons à des EDP paraboliques et hyperboliques que l’on perturbe stochastiquement au sens d’Itô. Il s’agit d’introduire l’aléatoire via l’ajout d’une intégrale stochastique (intégrale d’Itô) qui peut dépendre ou non de la solution, on parle alors de bruit multiplicatif ou additif. La présence de la variable de probabilité ne nous permet pas d’utiliser tous les outils classiques de l’analyse des EDP. Notre but est d’adapter les techniques connues dans le cadre déterministe aux EDP non linéaires stochastiques en proposant des méthodes alternatives. Les résultats obtenus sont décrits dans les cinq chapitres de cette thèse : Dans le Chapitre I, nous étudions une perturbation stochastique des équations de Barenblatt. En utilisant une semi- discrétisation implicite en temps, nous établissons l’existence et l’unicité d’une solution dans le cas additif, et grâce aux propriétés de la solution nous sommes en mesure d’étendre ce résultat au cas multiplicatif à l’aide d’un théorème de point fixe. Dans le Chapitre II, nous considérons une classe d’équations de type Barenblatt stochastiques dans un cadre abstrait. Il s’agit là d’une généralisation des résultats du Chapitre I. Dans le Chapitre III, nous travaillons sur l’étude du problème de Cauchy pour une loi de conservation stochastique. Nous montrons l’existence d’une solution par une méthode de viscosité artificielle en utilisant des arguments de compacité donnés par la théorie des mesures de Young. L’unicité repose sur une adaptation de la méthode de dédoublement des variables de Kruzhkov.. Dans le Chapitre IV, nous nous intéressons au problème de Dirichlet pour la loi de conservation stochastique étudiée au Chapitre III. Le point remarquable de l’étude repose sur l’utilisation des semi-entropies de Kruzhkov pour montrer l’unicité. Dans le Chapitre V, nous introduisons une méthode de splitting pour proposer une approche numérique du problème étudié au Chapitre IV, suivie de quelques simulations de l’équation de Burgers stochastique dans le cas unidimensionnel. / This thesis deals with the mathematical field of stochastic nonlinear partial differential equations’ analysis. We are interested in parabolic and hyperbolic PDE stochastically perturbed in the Itô sense. We introduce randomness by adding a stochastic integral (Itô integral), which can depend or not on the solution. We thus talk about a multiplicative noise or an additive one. The presence of the random variable does not allow us to apply systematically classical tools of PDE analysis. Our aim is to adapt known techniques of the deterministic setting to nonlinear stochastic PDE analysis by proposing alternative methods. Here are the obtained results : In Chapter I, we investigate on a stochastic perturbation of Barenblatt equations. By using an implicit time discretization, we establish the existence and uniqueness of the solution in the additive case. Thanks to the properties of such a solution, we are able to extend this result to the multiplicative noise using a fixed-point theorem. In Chapter II, we consider a class of stochastic equations of Barenblatt type but in an abstract frame. It is about a generalization of results from Chapter I. In Chapter III, we deal with the study of the Cauchy problem for a stochastic conservation law. We show existence of solution via an artificial viscosity method. The compactness arguments are based on Young measure theory. The uniqueness result is proved by an adaptation of the Kruzhkov doubling variables technique. In Chapter IV, we are interested in the Dirichlet problem for the stochastic conservation law studied in Chapter III. The remarkable point is the use of the Kruzhkov semi-entropies to show the uniqueness of the solution. In Chapter V, we introduce a splitting method to propose a numerical approach of the problem studied in Chapter IV. Then we finish by some simulations of the stochastic Burgers’ equation in the one dimensional case.
|
47 |
Contrôle optimal des équations d'évolution et ses applications / Optimal control of evolution equations and its applicationsNabolsi, Hawraa 17 July 2018 (has links)
Dans cette thèse, tout d’abord, nous faisons l’Analyse Mathématique du modèle exact du chauffage radiatif d’un corps semi-transparent $\Omega$ par une source radiative noire qui l’entoure. Il s’agit donc d’étudier le couplage d’un système d’Equations de Transfert Radiatif avec condition au bord de réflectivité indépendantes avec une équation de conduction de la chaleur non linéaire avec condition limite non linéaire de type Robin. Nous prouvons l’existence et l’unicité de la solution et nous démontrons des bornes uniformes sur la solution et les intensités radiatives dans chaque bande de longueurs d’ondes pour laquelle le corps est semi-transparent, en fonction de bornes sur les données, Deuxièmement, nous considérons le problème du contrôle optimal de la température absolue à l’intérieur du corps semi-transparent $\Omega$ en agissant sur la température absolue de la source radiative noire qui l’entoure. À cet égard, nous introduisons la fonctionnelle coût appropriée et l’ensemble des contrôles admissibles $T_{S}$, pour lesquels nous prouvons l’existence de contrôles optimaux. En introduisant l’espace des états et l’équation d’état, une condition nécessaire de premier ordre pour qu’un contrôle $T_{S}$ : t ! $T_{S}$ (t) soit optimal, est alors dérivée sous la forme d’une inéquation variationnelle en utilisant le théorème des fonctions implicites et le problème adjoint. Ensuite, nous considérons le problème de l’existence et de l’unicité d’une solution faible des équations de la thermoviscoélasticité dans une formulation mixte de type Hellinger- Reissner, la nouveauté par rapport au travail de M.E. Rognes et R. Winther (M3AS, 2010) étant ici l’apparition de la viscosité dans certains coefficients de l’équation constitutive, viscosité qui dépend dans ce contexte de la température absolue T(x, t) et donc en particulier du temps t. Enfin, nous considérons dans ce cadre le problème du contrôle optimal de la déformation du corps semi-transparent $\Omega$, en agissant sur la température absolue de la source radiative noire qui l’entoure. Nous prouvons l’existence d’un contrôle optimal et nous calculons la dérivée Fréchet de la fonctionnelle coût réduite. / This thesis begins with a rigorous mathematical analysis of the radiative heating of a semi-transparent body made of glass, by a black radiative source surrounding it. This requires the study of the coupling between quasi-steady radiative transfer boundary value problems with nonhomogeneous reflectivity boundary conditions (one for each wavelength band in the semi-transparent electromagnetic spectrum of the glass) and a nonlinear heat conduction evolution equation with a nonlinear Robin boundary condition which takes into account those wavelengths for which the glass behaves like an opaque body. We prove existence and uniqueness of the solution, and give also uniform bounds on the solution i.e. on the absolute temperature distribution inside the body and on the radiative intensities. Now, we consider the temperature $T_{S}$ of the black radiative source S surrounding the semi-transparent body $\Omega$ as the control variable. We adjust the absolute temperature distribution (x, t) 7! T(x, t) inside the semi-transparent body near a desired temperature distribution Td(·, ·) during the time interval of radiative heating ]0, tf [ by acting on $T_{S}$. In this respect, we introduce the appropriate cost functional and the set of admissible controls $T_{S}$, for which we prove the existence of optimal controls. Introducing the State Space and the State Equation, a first order necessary condition for a control $T_{S}$ : t 7! $T_{S}$ (t) to be optimal is then derived in the form of a Variational Inequality by using the Implicit Function Theorem and the adjoint problem. We come now to the goal problem which is the deformation of the semi-transparent body $\Omega$ by heating it with a black radiative source surrounding it. We introduce a weak mixed formulation of this thermoviscoelasticity problem and study the existence and uniqueness of its solution, the novelty here with respect to the work of M.E. Rognes et R. Winther (M3AS, 2010) being the apparition of the viscosity in some of the coefficients of the constitutive equation, viscosity which depends on the absolute temperature T(x, t) and thus in particular on the time t. Finally, we state in this setting the related optimal control problem of the deformation of the semi-transparent body $\Omega$, by acting on the absolute temperature of the black radiative source surrounding it. We prove the existence of an optimal control and we compute the Fréchet derivative of the associated reduced cost functional.
|
Page generated in 0.1191 seconds