Spelling suggestions: "subject:"paraboliques"" "subject:"paraboliques""
71 |
Sur des systèmes dynamiques dissipatifs de type gradient. Applications en Optimisation.Bolte, Jérôme 06 January 2003 (has links) (PDF)
L'étude et l'introduction de nouveaux systèmes dynamiques<br /> de type gradient sont l'objet central de cette thèse. Le<br /> caractère dissipatif de telles dynamiques est au coeur de<br /> nombreux domaines en mathématiques : optimisation,<br /> mécanique, équations d'évolutions en dimension infinie.<br /><br />Dans une première partie, les champs de gradients (ou de sous-différentiels<br /> de fonction convexe) sont contrôlés à l'aide d'opérateurs-barrières. <br />La motivation essentielle est d'obtenir<br /> des méthodes intérieures de descente en vue d'optimiser<br /> une fonction sous des contraintes convexes. Le cadre<br /> d'étude proposé permet d'unifier dans un même formalisme de nombreuses<br /> méthodes continues : gradient projeté, plus grande pente riemannienne,<br /> méthode continue de Newton... Parmi les conséquences de <br />la généralisation proposée, on peut, par exemple, évoquer des <br /> résultats abstraits de viabilité et de convergence globale. Toujours <br />dans cette <br />perspective, les fonctions de Legendre jouent un rôle crucial~:<br /> elles permettent d'une part de donner lieu à des structures<br /> riemanniennes possédant de nombreuses propriétés - parmi lesquelles une<br /> propriété d'intégration caractéristique remarquable -, et d'autre part, <br /> elles fournissent en dimension infinie un cadre intéressant<br /> pour l'étude de certaines équations d'évolution de type<br /> parabolique.<br /><br />La deuxième partie est consacrée à l'étude de systèmes<br /> dynamiques du second ordre en temps avec une dissipation géométrique<br /> de type hessien. Outre leur intérêt en optimisation<br /> et leurs liens avec les méthodes de type Newton, ces systèmes<br /> sont d'une grande souplesse et permettent d'approcher certains <br />phénomènes non-lisses en mécanique unilatérale. En guise d'application,<br /> il est en effet prouvé que les systèmes considérés permettent <br />d'obtenir à la limite des dynamiques <br />satisfaisant des lois de chocs inélastiques. Les<br /> perspectives de cette étude ouvrent en particulier la voie à une approche <br />alternative de certains systèmes d'inégalités variationnelles de type <br />hyperbolique.<br /><br /><br />L'une des préoccupations majeures de cette thèse est la question<br /> de la convergence des orbites des systèmes étudiés. Dans le <br /> cadre de la minimisation convexe, quasi-convexe, ou analytique, de nombreux<br /> résultats sont proposés : convergence globale, , <br />vitesse de convergence, contrôle asymptotique, attractivité des <br /> minima sous contraintes en dimension infinie.
|
72 |
Étude d'intégrateurs géométriques pour des équations différentiellesVilmart, Gilles 01 December 2008 (has links) (PDF)
Le sujet de la thèse est l'étude et la construction de méthodes numériques géométriques pour les équations différentielles, qui préservent des propriétés géométriques du flot exact, notamment la symétrie, la symplecticité des systèmes hamiltoniens, la conservation d'intégrales premières, la structure de Poisson, etc.<br />Dans la première partie, on introduit une nouvelle approche de construction d'intégrateurs numériques géométriques d'ordre élevé en s'inspirant de la théorie des équations différentielles modifiées. Le cas des méthodes développables en B-séries est spécifiquement analysé et on introduit une nouvelle loi de composition sur les B-séries. L'efficacité de cette approche est illustrée par la construction d'un nouvel intégrateur géométrique d'ordre élevé pour les équations du mouvement d'un corps rigide. On obtient également une méthode numérique précise pour le calcul de points conjugués pour les géodésiques du corps rigide.<br />Dans la seconde partie, on étudie dans quelle mesure les excellentes performances des méthodes symplectiques, pour l'intégration à long terme en astronomie et en dynamique moléculaire, persistent pour les problèmes de contrôle optimal. On discute également l'extension de la théorie des équations modifiées aux problèmes de contrôle optimal.<br />Dans le même esprit que les équations modifiées, on considère dans la dernière partie des méthodes de pas fractionnaire (splitting) pour les systèmes hamiltoniens perturbés, utilisant des potentiels modifiés. On termine par la construction de méthodes de splitting d'ordre élevé avec temps complexes pour les équations aux dérivées partielles paraboliques, notamment les problèmes de réaction-diffusion en chimie.
|
73 |
Quelques résultats mathématiques sur les gaz à faible nombre de MachLiao, Xian 24 April 2013 (has links) (PDF)
Cette thèse est consacrée à l'étude de la dynamique des gaz à faible nombre de Mach. Le modèle étudié provient des équations de Navier-Stokes complètes lorsque le nombre de Mach tend vers zéro. On cherche à montrer que le problème de Cauchy correspondant est bien posé. Les cas visqueux et non visqueux sont tous deux considérés. Les coefficients physiques peuvent dépendre de la densité (ou de la température) inconnue. En articulier, nous prenons en compte les effets de onductivité thermique et on autorise de grandes variations d'entropie. Rappelons qu'en absence de diffusion thermique, la limite à faible nombre de Mach implique la condition d'incompressibilité. Dans le cadre étudié ici, en introduisant un nouveau champ de vitesses à divergence nulle, le système devient un couplage non linéaire entre une équation quasi-parabolique pour la densité et un système de type Navier-Stokes (ou Euler) pour la vitesse et la pression. \\\\ Pour le cas avec viscosité, on établit le résultat classique, à savoir qu'il existe une solution forte existant localement (resp. globalement) en temps pour des données initiales grandes (resp. petites). On considère ici le problème de Cauchy avec données initiales dans des espaces de Besov critiques. Lorsque les coefficients physiques du système vérifient une relation spéciale, le système se simplifie considérablement, et on peut alors établir qu'il existe des solutions faibles globales en temps à énergie finie. Par un argument d'unicité fort-faible, on en déduit que les solutions fortes à énergie finie existent pour tous les temps positifs en dimension deux. \\\\ Pour le cas sans viscosité, on montre d'abord le caractère bien posé dans des espaces de Besov limites, qui s'injectent dans l'espace des fonctions lipschitziennes. Des critères de prolongement et des estimations du temps de vie sont établis. Si l'on suppose la donnée initiale à énergie finie dans l'espace de Besov limite à exposant de Lebesgue infini, on a également un résultat d'existence locale. En dimension deux, le temps de vie tend vers l'infini quand la densité tend vers une constante positive. \\\\ Des estimations de produits et de commutateurs, ainsi que des estimations a priori pour les équations paraboliques et pour le système de Stokes (ou d'Euler) à coefficients variables, se trouvent dans l'annexe.Ces estimations reposent sur la théorie de Littlewood-Paley et le calcul paradifférentiel.
|
74 |
Effet des conditions aux limites et analyse multi-échelles en mécanique des fluides, chromatographie et électromagnétismeGisclon, Marguerite 07 December 2007 (has links) (PDF)
Ce texte de synthèse a pour but de présenter l'´évolution de mes recherches postèrieures à ma thèse. Ce travail s'articule autour de plusieurs axes de recherche dans le cadre des équations aux dérivées partielles non linéaires et en particulier des lois de conservation.<br />Il s'inscrit dans l'étude des problèmes hyperboliques, des problème mixtes et des équations cinétiques. Les domaines d'application sont la mécanique des fluides ou du solide, la propagation de composants chimiques, l'électromagnétisme, l'optique.<br />Mon activité concerne d'abord la modélisation de phénomènes physiques ou chimiques sous forme d'équations aux dérivées partielles non linéaires telles que les équations de Bloch, Korteweg, Navier-Stokes, Saint-Venant, puis vient l'étude mathématique de ces équations à travers les<br />problèmes d'existence, d'unicité, de régularité avec éventuellement la mise au point de méthodes numériques de résolution.<br /> Ce document est divisé en une introduction générale et trois chapitres qui concernent respectivement les systèmes hyperboliques avec conditions aux limites et la chromatographie, les problèmes d'analyse asymptotique et enfin les méthodes cinétiques.<br />Dans chaque partie, un historique et une présentation des différents résultats mathématiques sont faits et quelques problèmes ouverts sont donnés.
|
75 |
THÉORIE NON LINÉAIRE DU POTENTIEL ET ÉQUATIONS QUASILINÉAIRES AVEC DONNÉES MESURESNguyen, Quoc-Hung 25 September 2014 (has links) (PDF)
Cette thése concerne l'existence et la régularité de solutions d'équations non-linéaires elliptiques, d'équations paraboliques et d'équations de Hesse avec mesures, et les critéres de l'existence de solutions grandes d'équations elliptiques et paraboliques non-linéaires. \textbf{Liste de publications} \begin{description} \item[1.] Avec M. F. Bidaut-Véron, L. Véron; {\em Quasilinear Lane-Emden equations with absorption and measure data,} Journal des Mathématiques Pures et Appliquées,~{\bf 102}, 315-337 (2014). \item[2] Avec L. Véron; {\em Quasilinear and Hessian type equations with exponential reaction and measure data,} Archive for Rational Mechanics and Analysis, {\bf 214}, 235-267 (2014). \item[3] Avec L. Véron; {\em Wiener criteria for existence of large solutions of quasilinear elliptic equations with absorption,} 17 pages, soumis, arXiv:1308.2956. \item[4] Avec M. F. Bidaut-Véron; {\em Stability properties for quasilinear parabolic equations with measure data,} 29 pages, á apparaître dans Journal of European Mathematical Society, arXiv:1409.1518. \item[5] Avec M. F. Bidaut-Véron; {\em Evolution equations of $p$-Laplace type with absorption or source terms and measure data}, 21 pages, á apparaître dans Communications in Contemporary Mathematics, arXiv:1409.1520. \item[6] {\em Potential estimates and quasilinear parabolic equations with measure data,} 118 pages, arXiv:1405.2587v1. \item[7] Avec L. Véron; {\em Wiener criteria for existence of large solutions of nonlinear parabolic equations with absorption in a non-cylindrical domain,} 29 pages, soumis,\\ arXiv:1406.3850. \item[8] Avec M. F. Bidaut-Véron; {Pointwise estimates and existence of solutions of porous medium and $p$-Laplace evolution equations with absorption and measure data,\em } 27 pages, soumis, arXiv:1407.2218. \end{description}\begin{description} \item[1.] Avec M. F. Bidaut-Véron, L. Véron; {\em Quasilinear Lane-Emden equations with absorption and measure data,} Journal des Mathématiques Pures et Appliquées,~{\bf 102}, 315-337 (2014). \item[2] Avec L. Véron; {\em Quasilinear and Hessian type equations with exponential reaction and measure data,} Archive for Rational Mechanics and Analysis, {\bf 214}, 235-267 (2014). \item[3] Avec L. Véron; {\em Wiener criteria for existence of large solutions of quasilinear elliptic equations with absorption,} 17 pages, soumis, arXiv:1308.2956. \item[4] Avec M. F. Bidaut-Véron; {\em Stability properties for quasilinear parabolic equations with measure data,} 29 pages, á apparaître dans Journal of European Mathematical Society, arXiv:1409.1518. \item[5] Avec M. F. Bidaut-Véron; {\em Evolution equations of $p$-Laplace type with absorption or source terms and measure data}, 21 pages, á apparaître dans Communications in Contemporary Mathematics, arXiv:1409.1520. \item[6] {\em Potential estimates and quasilinear parabolic equations with measure data,} 118 pages, arXiv:1405.2587v1. \item[7] Avec L. Véron; {\em Wiener criteria for existence of large solutions of nonlinear parabolic equations with absorption in a non-cylindrical domain,} 29 pages, soumis,\\ arXiv:1406.3850. \item[8] Avec M. F. Bidaut-Véron; {Pointwise estimates and existence of solutions of porous medium and $p$-Laplace evolution equations with absorption and measure data,\em } 27 pages, soumis, arXiv:1407.2218. \end{description}
|
76 |
Théorie non linéaire du potentiel et équations quasilinéaires avec données mesures / Nonlinear potential theory and quasilinear equations with measure dataNguyen, Quoc-Hung 25 September 2014 (has links)
Cette thèse concerne l’existence et la régularité de solutions d’équations non-linéaires elliptiques, d’équations paraboliques et d’équations de Hesse avec mesures, et les critères de l’existence de solutions grandes d’équations elliptiques et paraboliques non-linéaires. / This thesis is concerned to the existence and regularity of solutions to nonlinear elliptic, parabolic and Hessian equations with measure, and criteria for the existence of large solutions to some nonlinear elliptic and parabolic equations.
|
Page generated in 0.0596 seconds