Spelling suggestions: "subject:"martial differential equations"" "subject:"martial ifferential equations""
461 |
H-∞ optimal actuator locationKasinathan, Dhanaraja January 2012 (has links)
There is often freedom in choosing the location of actuators on systems governed by partial differential equations.
The actuator locations should be selected in order to optimize the performance criterion of interest. The main focus of this thesis is to consider H-∞-performance with state-feedback. That is, both the controller and the actuator locations are chosen to minimize the effect of disturbances on the output of a full-information plant.
Optimal H-∞-disturbance attenuation as a function of actuator location is used as the cost function. It is shown that the corresponding actuator location problem is well-posed. In practice, approximations are used to determine the optimal actuator location. Conditions for the convergence of optimal performance and the corresponding actuator location to the exact performance and location are provided. Examples are provided to illustrate that convergence may fail when these conditions are not satisfied.
Systems of large model order arise in a number of situations; including approximation of partial differential equation models and power systems. The system descriptions are sparse when given in descriptor form but not when converted to standard first-order form. Numerical calculation of H-∞-attenuation involves iteratively solving large H-∞-algebraic Riccati equations (H-∞-AREs) given in the descriptor form. An iterative algorithm that preserves the sparsity of the system description to calculate the solutions of large H-∞-AREs is proposed. It is shown that the performance of our proposed algorithm is similar to a Schur method in many cases. However, on several examples, our algorithm is both faster and more accurate than other methods.
The calculation of H-∞-optimal actuator locations is an additional layer of optimization over the calculation of optimal attenuation. An optimization algorithm to calculate H-∞-optimal actuator locations using a derivative-free method is proposed. The results are illustrated using several examples motivated by partial differential equation models that arise in control of vibration and diffusion.
|
462 |
Validated Continuation for Infinite Dimensional ProblemsLessard, Jean-Philippe 07 August 2007 (has links)
Studying the zeros of a parameter dependent operator F defined on a Hilbert space H is a fundamental problem in mathematics. When the Hilbert space is finite dimensional, continuation provides, via predictor-corrector algorithms, efficient techniques to numerically follow the zeros of F as we move the parameter. In the case of infinite dimensional Hilbert spaces, this procedure must be applied to some finite dimensional approximation which of course raises the question of validity of the output. We introduce a new technique that combines the information obtained from the predictor-corrector steps with ideas from rigorous computations and verifies that the numerically produced zero for the finite dimensional system can be used to explicitly define a set which contains a unique zero for the infinite dimensional problem F: HxR->Im(F).
We use this new validated continuation to study equilibrium solutions of partial differential equations, to prove the existence of chaos in ordinary differential equations and to follow branches of periodic solutions of delay differential equations. In the context of partial differential equations, we show that the cost of validated continuation is less than twice the cost of the standard continuation method alone.
|
463 |
Parallel Multilevel Preconditioners for Problems of Thin Smooth ShellsThess, M. 30 October 1998 (has links) (PDF)
In the last years multilevel preconditioners like BPX became more and more
popular for solving second-order elliptic finite element discretizations by iterative
methods. P. Oswald has adapted these methods for discretizations of the fourth
order biharmonic problem by rectangular conforming Bogner-Fox-Schmidt elements
and nonconforming Adini elements and has derived optimal estimates for the
condition numbers of the preconditioned linear systems. In this paper we generalize
the results from Oswald to the construction of BPX and Multilevel Diagonal
Scaling (MDS-BPX) preconditioners for the elasticity problem of thin smooth shells of
arbitrary forms where we use Koiter's equations of equilibrium for an homogeneous
and isotropic thin shell, clamped on a part of its boundary and loaded by a
resultant on its middle surface. We use the two discretizations mentioned above and the
preconditioned conjugate gradient method as iterative method. The parallelization
concept is based on a non-overlapping domain decomposition data structure. We
describe the implementations of the multilevel preconditioners. Finally, we show
numerical results for some classes of shells like plates, cylinders, and hyperboloids.
|
464 |
Optimal transport, free boundary regularity, and stability results for geometric and functional inequalitiesIndrei, Emanuel Gabriel 01 July 2013 (has links)
We investigate stability for certain geometric and functional inequalities and address the regularity of the free boundary for a problem arising in optimal transport theory. More specifically, stability estimates are obtained for the relative isoperimetric inequality inside convex cones and the Gaussian log-Sobolev inequality for a two parameter family of functions. Thereafter, away from a ``small" singular set, local C^{1,\alpha} regularity of the free boundary is achieved in the optimal partial transport problem. Furthermore, a technique is developed and implemented for estimating the Hausdorff dimension of the singular set. We conclude with a corresponding regularity theory on Riemannian manifolds. / text
|
465 |
Analysis and numerics of the singularly perturbed Oseen equations / Analysis und Numerik der singulär gestörten Oseen-GleichungenHöhne, Katharina 16 November 2015 (has links) (PDF)
Be it in the weather forecast or while swimming in the Baltic Sea, in almost every aspect of every day life we are confronted with flow phenomena. A common model to describe the motion of viscous incompressible fluids are the Navier-Stokes equations. These equations are not only relevant in the field of physics, but they are also of great interest in a purely mathematical sense. One of the difficulties of the Navier-Stokes equations originates from a non-linear term.
In this thesis, we consider the Oseen equations as a linearisation of the Navier-Stokes equations. We restrict ourselves to the two-dimensional case. Our domain will be the unit square.
The aim of this thesis is to find a suitable numerical method to overcome known instabilities in discretising these equations. One instability arises due to layers of the analytical solution. Another instability comes from a divergence constraint, where one gets poor numerical accuracy when the irrotational part of the right-hand side of the equations is large. For the first cause, we investigate the layer behaviour of the analytical solution of the corresponding stream function of the problem. Assuming a solution decomposition into a smooth part and layer parts, we create layer-adapted meshes in Chapter 3. Using these meshes, we introduce a numerical method for equations whose solutions are of the assumed structure in Chapter 4. To reduce the instability caused by the divergence constraint, we add a grad-div stabilisation term to the standard Galerkin formulation. We consider Taylor-Hood elements and elements with a discontinous pressure space. We can show that there exists an error bound which is independent of our perturbation parameter and get information about the convergence rate of the method. Numerical experiments in Chapter 5 confirm our theoretical results.
|
466 |
Μερικές διαφορικές εξισώσεις, αλγεβρική υπολογιστική και μη γραμμικά συστήματαΔήμας, Στυλιανός 07 July 2009 (has links)
Η κατά συμμετρίες ανάλυση είναι μια σύγχρονή και αποτελεσματική μέθοδος ανάλυσης του μαθηματικού πεδίου των Διαφορικών Εξισώσεων. Στα πλεονεκτήματα της, ο αλγοριθμικός τρόπος με τον οποίο μπορούμε να βρούμε τις συμμετριες ενός συστήματος και η κατακευή λύσεων από αυτές. Όμως, όπως και κάθε άλλη μέθοδος έτσι και αυτή έχει τα μειονεκτήματα της, το μέγεθος και η πολυπλοκότητα των ενδιάμεσων υπολογισμών που απαιτούνται για την εύρεση των συμμετρίων ενός συστήματος αυξάνεται εκθετικά σε σχέση με αυτό. Γεγονός που καθιστά τους υπολογισμούς αυτούς με το χέρι χρονοβόρους και επιρρεπής σε σφάλματα και συνεπώς την ανάγκη για την χρήση αξιόπιστων συμβολικών προγραμμάτων επιτακτική. Για τον σκοπό αυτό αναπτύξαμε το συμβολικό πακέτο Sym για το αλγεβρικό σύστημα Mathematica. Το συμβολικό αυτό πακέτο περιέχει στοιχεία τεχνικής νοημοσύνης και εξιδικευμένες συμβολικές μεθόδους. Στοιχεία που το καθιστούν ένα αποτελεσματικό και ευέλικτο μαθηματικό εργαλείο τόσο στον ερευνητικό τομέα όσο και στην εκπαίδευση.
Το παρόν διδακτορικό χωρίζεται σε δύο μέρη, στο πρώτο παρουσιάζουμε τις βασικές έννοιες της κατα συμμετρίες ανάλυσης διαφορικών εξισώσεων και τους λόγους για τους οποίους η χρήση συμβολικών προγραμμάτων βρίσκει πρόσφορο έδαφος. Στο δεύτερο μέρος, παρουσιάζουμε το συμβολικό πακέτο Sym και δύο ερευνητικά αποτελέσματα της χρήσης του. Όσο αναφορά το ίδιο το πακέτο, δίνουμε τα βασικά του χαρακτηριστικά , τον τρόπο λειτουργίας του και τα οφέλη του σε σχέση με τα ήδη υπάρχοντα συμβολικά πακέτα για την εύρεση συμμετριών. Η χρηστικότητα του παρουσιάζεται μέσω δύο ερευνητικών αποτελεσμάτων. Στο πρώτο, εξετάζουμε ενα πρόβλημα από την περιοχή της Γενικής Σχετικότητας, την εύρεση βαρυτικών κυμάτων. Οι συμμετρίες των εξισώσεων πεδίου του Einstein για την μετρική του Bondi καθορίζονται μέσω του Sym και υποβιβάζουμε με αυτές την τάξη του μή γραμμικού συστήματος. Με υποθέσεις εργασίας πάνω στο σύστημα αυτό δίνουμε ειδικές λύσεις οι οποίες είχαν προκύψει παλίοτερα με άλλες μεθόδους. Τέλος, παρουσιάζουμε τις μελλοντικές μας κατευθύνσεις προς την καθορισμό νέων λύσεων με την σωστή φυσική συμπεριφορά που επιβάλει το πρόβλημα. Στο δεύτερο, δίνουμε μια προτότυπη διαδικασία κατηγοριοποίησης διαφορικών εξισώσεων χρησιμοποιώντας τις ένοιες της πλήρους ομάδας συμετρίας και της αξιοσημείωτης κατά Lie διαφορικής εξίσωσης. Με βάση αυτή, επιτυγχάνουμε την συνθέση διαφορικών εξισώσεων κατασκευάζοντας έτσι καινούργιες οικογένεις διαφορικών εξισώσεων περιέχοντες τις αρχικές μας εξισώσεις. / The symmetry analysis is a modern and effective method of mathematical field of differential equations. On its advantages, the algorithmic way for determining the symmetries and constructing solutions. Like any other method it also has its disadvantages; the size and the complexity of the intermediate calculations needed for giving the symmetries is increased exponentially with respect to the equation under investigation. This fact renders the calculations unmanageable by hand and error prone. The need for reliable and fast symbolic tools is apparent. For this reason, we developed a symbolic package called Sym based on the Mathematica program. The package employing artificial intelligent elements and specialized symbolic methods is an effective and versatile mathematical tool ideal for research and education alike.
The present thesis consists of two parts; on the first we present the basic notions of the mathematical theory and the reasons that symbolic tools can be utilized. On the second part, we present the symbolic package Sym itself along with two new result employing it. As for the package itself, we give the basic characteristics, its functionality and the benefits using it against the existing programs. Its usefulness is presented through two results. On the first, we study a problem from General Relativity, finding solutions describing gravity waves. The symmetries of the Einstein’s field equations for the radiating Bondi metric are determined from Sym. Using them we reduce the non-linear system. Using specific ansatzes we arrive to specific solutions already found using other methods. Finally, we present our future directions for finding new solutions with the correct physical behavior. On the second, we describe a new procedure for classifying differential equations using the notions of complete symmetry groups and Lie remarkability. Using this procedure we achieved by starting with a set of differential equation to construct a new family that includes the initial set. Future directions include finding a way to link the solutions of the newly constructed family with the solutions of the equations that we use for constructing it.
|
467 |
KINTAMO DIFUZIJOS KOEFICIENTO PARABOLINIŲ LYGČIŲ SPRENDIMAS SKAITINIAIS METODAIS / The solution of variable diffusion coefficient of the parabolic equations by numerical methodsStonkutė, Alina 03 September 2010 (has links)
Magistro darbe sprendėme diferencialinę difuzijos lygtį naujais metodais. Išanalizavę standartinius kintamo difuzijos koeficiento parabolinių lygčių sprendimo metodus, mes šiame darbe pasiūlėme spręsti šias lygtis naudojant vadinamąsias „tilto“ funkcijas. Išbandėme dviejų rūšių „tilto“ funkcijas: hiperbolinio tangento ir trigonometrinio. Diferencialinės lygties sprendinio ieškojome per „tilto“ funkcijų ir polinomų sandaugų sumą: trigonometrinei „tilto“ funkcijai ir hiperbolinei tangento „tilto“ funkcijai. Gavome kompiuterinius sprendinius ir nustatėme tų sprendinių paklaidas. Palyginę trigonometrinio bei hiperbolinio tangento „tilto“ funkcijos paklaidų standartinius nuokrypius gavome, kad tikslesnis yra hiperbolinio tangento „tilto“ funkcijos metodas. / Master thesis solved differential equation of diffusion of new techniques methods. Having analyzed the standard variable diffusion coefficient parabolic equation solution methods suggested in this work we solve these equations using the so-called "bridge" function. Tried two types of "bridge" functions: tangent hyperbolic and trigonometric. Differential equation, the solution we were looking for a "bridge" function and the amount of products of powers of polynomials: trigonometry "bridge" function and hyperbolic tangent of a "bridge" function. We have received computer-based solutions and the solutions found at the margins. A comparison of hyperbolic tangent trigonometric "bridge" function of the error standard deviations have received, the more accurate the hyperbolic tangent of a "bridge" function approach.
|
468 |
A Collage-Based Approach to Inverse Problems for Nonlinear Systems of Partial Differential EquationsLevere, Kimberly Mary 30 March 2012 (has links)
Inverse problems occur in a wide variety of applications and are an active area of research in many disciplines. We consider inverse problems for a broad class of nonlinear systems of partial differential equations (PDEs). We develop collage-based approaches for solving inverse problems for nonlinear PDEs of elliptic, parabolic and hyperbolic type. The original collage method for solving inverse problems was developed in [29] with broad application, in particular to ordinary differential equations (ODEs). Using a consequence of Banach’s fixed point theorem, the collage theorem, one can bound the approximation error above by the so-called collage distance, which is more readily minimizable. By minimizing the collage distance the approximation error can be controlled. In the case of nonlinear PDEs we consider the weak formulation of the PDE and make use of the nonlinear Lax-Milgram representation theorem and Galerkin approximation theory in order to develop a similar upper-bound on the approximation error. Supporting background theory, including weak solution theory,is presented and example problems are solved for each type of PDE to showcase the methods in practice. Numerical techniques and considerations are discussed and results are presented. To demonstrate the practical applicability of this work, we study two real-world applications. First, we investigate a model for the migration of three
fish species through floodplain waters. A development of the mathematical model is presented and a collage-based method is applied to this model to recover the diffusion parameters. Theoretical and numerical particulars are discussed and results are presented. Finally, we investigate a model for the “Gao beam”, a nonlinear beam model that incorporates the possibility of buckling. The mathematical model is developed and the weak formulation is discussed. An inverse problem that seeks the flexural rigidity of the beam is solved and results are presented. Finally, we discuss avenues of future research arising from this work. / Natural Sciences and Engineering Research Council of Canada, Department of Mathematics & Statistics
|
469 |
Simulation numérique de feux de forêt avec réinitialisation et contournement d’obstaclesDesfossés Foucault, Alexandre 01 1900 (has links)
Ce travail présente une technique de simulation de feux de forêt qui utilise la
méthode Level-Set. On utilise une équation aux dérivées partielles pour déformer
une surface sur laquelle est imbriqué notre front de flamme. Les bases mathématiques
de la méthode Level-set sont présentées. On explique ensuite une méthode
de réinitialisation permettant de traiter de manière robuste des données réelles et
de diminuer le temps de calcul. On étudie ensuite l’effet de la présence d’obstacles
dans le domaine de propagation du feu. Finalement, la question de la recherche
du point d’ignition d’un incendie est abordée. / This work presents a forest fire simulation model which uses the Level-Set
method. We use a partial differential equation to deform a surface on which our
flame front is inscribed. The mathematical foundations of the Level-set method
are presented. We then explain a reinitialization method that allows us to treat
in a robust way real data and to reduce the calculation time. The effect of the
presence of barriers in the fire propagation domain is also studied. Finally, we
make an attempt to find the ignition point of a forest fire.
|
470 |
Infinitely Many Rotationally Symmetric Solutions to a Class of Semilinear Laplace-Beltrami Equations on the Unit SphereFischer, Emily M 01 January 2014 (has links)
I show that a class of semilinear Laplace-Beltrami equations has infinitely many solutions on the unit sphere which are symmetric with respect to rotations around some axis. This equation corresponds to a singular ordinary differential equation, which we solve using energy analysis. We obtain a Pohozaev-type identity to prove that the energy is continuously increasing with the initial condition and then use phase plane analysis to prove the existence of infinitely many solutions.
|
Page generated in 0.1559 seconds