Spelling suggestions: "subject:"1article identification"" "subject:"3article identification""
11 |
A large area time of flight detector for the STAR experiment at RHICKajimoto, Kohei 29 June 2010 (has links)
A large area time of flight (TOF) detector based on multi-gap resistive plate chamber (MRPC) technology has been developed for the STAR (Solenoidal Tracker at RHIC) experiment at the Relativistic Heavy Ion Collider at the Brookhaven National Laboratory, New York. The TOF detector replaces STAR's Central Trigger Barrel detector with 120 trays, each with 32 MRPCs. Each MRPC has 6 channels. The TOF detector improves by a factor of about 2 STAR's particle identification reach in transverse momenta and enhances STARs physics research program.
|
12 |
Investigation of resonance phenomena in the '1'6O+'1'6O systemDillon, Graham Keith January 1999 (has links)
No description available.
|
13 |
A measurement of triple gauge boson couplings in fully leptonic W decaysLloyd, Alun Wyn January 2000 (has links)
No description available.
|
14 |
Identificação de elétrons com um detector de radiação de transição em colisões de íons pesados relativísticos / Electron identification with a transition radiation detector in relativistic heavy ion collisionsLenzi, Bruno Rodrigues 14 August 2007 (has links)
Este trabalho descreve o desenvolvimento de um simulador para as câmaras de expansão temporal / detectores de radiação de transição (TEC / TRD) do experimento PHENIX, instalado no Colisor de Íons Pesados Relativisticos (RHIC) do Laboratório Nacional de Brookhaven (BNL) nos EUA. O programa do RHIC prevê a produção e caracterização de um estado da matéria conhecido como plasma de quarks e glúons (QGP), através de colisões entre prótons, dêuterons e íons pesados com energias de centro de massa sqrt(s_NN) entre 20 e 200 GeV. O PHENIX, um dos quatro experimentos instalados no acelerador, é especializado na medida de sinais eletrofracos provenientes das colisões e o TEC / TRD é o único subsistema do PHENIX capaz de identificar elétrons de forma eficiente para momentos acima de 5 GeV/c. Um simulador para reprodução da resposta do detector à passagem de partículas foi desenvolvido e comparado a dados de um detector proporcional monofilar construído no Laboratório de Instrumentação e Partículas da USP, e aos dados do próprio TEC / TRD. Os resultados mostram um acordo razoável entre medidas e simulações. O uso do simulador deverá permitir o estudo de novos métodos e melhoras na capacidade de identificação de elétrons do sistema. / The present work describes the development of a simulator for the Time Expansion Chambers / Transition Radiation Detectors (TEC / TRD) of the PHENIX experiment, installed at the Relativistic Heavy Ion Collider (RHIC) of Brookhaven National Laboratory (BNL). The main goal of the RHIC project is the production and study of a state of matter known as Quark Gluon Plasma (QGP), through collisions of protons, deuterons and heavy ions at center of mass energies sqrt(s_NN) ranging between 20 and 200 GeV. PHENIX, one of the four experiments of the accelerator, is dedicated to measuring electroweak signals arising from the collisions, and TEC / TRD is the only subsystem capable of identifying efficiently electrons with momenta above 5 GeV/c. A simulator to reproduce the detector response to the passage of particles was developed and compared to data from a single wire proporcional counter and from TEC / TRD itself. The results show reasonable agreement between measurements and simulations. The use of the simulator allows studies of new methods and possibly improvements in the electron identification capability of the system.
|
15 |
First application of CsI(Tl) pulse shape discrimination at an e^+ e^- collider to improve particle identification at the Belle II experimentLongo, Savino 31 October 2019 (has links)
This dissertation investigates CsI(Tl) pulse shape discrimination (PSD) as a novel experimental technique to improve challenging areas of particle identification at high energy $e^+ e^-$ colliders using CsI(Tl) calorimeters. In this work CsI(Tl) PSD is implemented and studied at the Belle II experiment operating at the SuperKEKB $e^+ e^-$ collider, representing the first application of CsI(Tl) PSD at a $B$ factory experiment.
Results are presented from Belle II as well as a testbeam completed at the TRIUMF proton and neutron irradiation facility. From the analysis of the testbeam data, energy deposits from highly ionizing particles are shown to produce a CsI(Tl) scintillation component with decay time of $630\pm10$ ns, referred to as the hadron scintillation component, and not present in energy deposits from electromagnetic showers or minimum ionizing particles. By measuring the fraction of hadron scintillation emission relative to the total scintillation emission, a new method for CsI(Tl) pulse shape characterization is developed and implemented at the Belle II experiment's electromagnetic calorimeter, constructed from 8736 CsI(Tl) crystals.
A theoretical model is formulated to allow for simulations of the particle dependent CsI(Tl) scintillation response. This model is incorporated into GEANT4 simulations of the testbeam apparatus and the Belle II detector, allowing for accurate simulations of the observed particle dependent scintillation response of CsI(Tl). With $e^\pm$, $\mu^\pm$, $\pi^\pm$, $K^\pm$ and $p/\bar{p}$ control samples selected from Belle II collision data the performance of this new simulation technique is evaluated. In addition the performance of hadronic interaction modelling by GEANT4 particle interactions in matter simulation libraries is studied and using PSD potential sources of data vs. simulation disagreement are identified.
A PSD-based multivariate classifier trained for $K_L^0$ vs. photon identification is also presented. With $K_L^0$ and photon control samples selected from Belle II collision data, pulse shape discrimination is shown to allow for high efficiency $K_L^0$ identification with low photon backgrounds as well as improved $\pi^0$ identification compared to shower-shape based methods. / Graduate
|
16 |
Identificação de elétrons com um detector de radiação de transição em colisões de íons pesados relativísticos / Electron identification with a transition radiation detector in relativistic heavy ion collisionsBruno Rodrigues Lenzi 14 August 2007 (has links)
Este trabalho descreve o desenvolvimento de um simulador para as câmaras de expansão temporal / detectores de radiação de transição (TEC / TRD) do experimento PHENIX, instalado no Colisor de Íons Pesados Relativisticos (RHIC) do Laboratório Nacional de Brookhaven (BNL) nos EUA. O programa do RHIC prevê a produção e caracterização de um estado da matéria conhecido como plasma de quarks e glúons (QGP), através de colisões entre prótons, dêuterons e íons pesados com energias de centro de massa sqrt(s_NN) entre 20 e 200 GeV. O PHENIX, um dos quatro experimentos instalados no acelerador, é especializado na medida de sinais eletrofracos provenientes das colisões e o TEC / TRD é o único subsistema do PHENIX capaz de identificar elétrons de forma eficiente para momentos acima de 5 GeV/c. Um simulador para reprodução da resposta do detector à passagem de partículas foi desenvolvido e comparado a dados de um detector proporcional monofilar construído no Laboratório de Instrumentação e Partículas da USP, e aos dados do próprio TEC / TRD. Os resultados mostram um acordo razoável entre medidas e simulações. O uso do simulador deverá permitir o estudo de novos métodos e melhoras na capacidade de identificação de elétrons do sistema. / The present work describes the development of a simulator for the Time Expansion Chambers / Transition Radiation Detectors (TEC / TRD) of the PHENIX experiment, installed at the Relativistic Heavy Ion Collider (RHIC) of Brookhaven National Laboratory (BNL). The main goal of the RHIC project is the production and study of a state of matter known as Quark Gluon Plasma (QGP), through collisions of protons, deuterons and heavy ions at center of mass energies sqrt(s_NN) ranging between 20 and 200 GeV. PHENIX, one of the four experiments of the accelerator, is dedicated to measuring electroweak signals arising from the collisions, and TEC / TRD is the only subsystem capable of identifying efficiently electrons with momenta above 5 GeV/c. A simulator to reproduce the detector response to the passage of particles was developed and compared to data from a single wire proporcional counter and from TEC / TRD itself. The results show reasonable agreement between measurements and simulations. The use of the simulator allows studies of new methods and possibly improvements in the electron identification capability of the system.
|
17 |
Tests of perturbative and non-perturbative QCD from identified proton, kaon and pion studies in deep inelastic scattering ep interactions at HERAWhite, Glen R. January 2000 (has links)
No description available.
|
18 |
A detector for charged particle identification in the forward region of SuperB / Un détecteur pour l’identification des particules chargées dans la région avant de SuperBBurmistrov, Leonid 09 December 2011 (has links)
Dans cette thèse nous présentons la conception, l'étude des performances et les premiers tests, effectues au Cosmic Muon Telescope situe au SLAC, d'un nouveau détecteur d'identification des particules émises dans la région ''avant'' du détecteur SuperB.Ce détecteur est base une technique de temps de vol (TOF). Pour identifier les particules avec une impulsion jusqu'à 3GeV/c et une distance de vol de l'ordre de deux mètres nous avons besoin d'un détecteur TOF capable de mesurer le temps avec une précision typique de 30 ps. Pour atteindre cet objectif nous avons conçu un composant pour lequel le passage d'une particule chargée produit de la lumière Cherenkov dans un ''fused silica'' (quartz) radiator qui est ensuite détectée par des photodétecteurs tres rapides et une électronique rapide dédiée. Nous l'appelons détecteur DIRC-like TOF.Les photodétecteurs HAMAMATSU SL-10 MCP-PMT ont été caractérises sur faisceau de test au LAL et la résolution en temps d'environ 37 ps a été mesurée. La nouvelle électronique 16-canaux USB WaveCatcher développée au LAL(CNRS/IN2P3) et CEA/IRFU montre un jitter de moins de 10 ps. La géometrie du détecteur a quartz a été étudiée avec une attention particulière a l'aide d'une simulation Geant4. Celle-ci montre que la meilleure géométrie permet d'atteindre une résolution en temps d'environ 90 ps par photoélectron avec au moins 10 photoélectrons détectés, donnant en moyenne la résolution totale désirée de 30 ps.Nous avons construit un prototype d'un tel composant, utilisant les barres de quartz utilisées pour l'expérience Babar et nous l'avons installe dans le Cosmic Ray Telescope au SLAC. Une résolution en temps d'environ 70~ps par photoélectron a été obtenue, en accord avec la simulation.Cette preuve de principe a convaincu la Collaboration SuperB d'adopter un tel composant comme solution de base pour l'identification des particules émises vers l'avant dans SuperB. Le point délicat, encore ouvert, est celui de la résistance de ce détecteur aux bruits de fond de la machine.Dans cette thèse nous présentons aussi les études préliminaires de différents types de bruit de fond et leur effet sur les performances du détecteur DIRC-like TOF. Le processus Bhabha radiatif est de loin la source dominante de bruit de fond. Le taux de photoélectrons de bruit de fond principalement du aux gammas d'énergie d'environ 1.4 MeV est estimée a ~480 kHz/cm^2 ce qui correspond a 2 C/cm^2 de charge d'anode integrée sur 5 ans. Le flux de neutrons traversant l'électronique de front end du détecteur DIRC-like TOF est estimée a ~10^11/cm^2/year. Ces résultats préliminaires sont rassurants. / In this thesis, we present the conception, the performances studies and the first tests in the Cosmic Muon Telescope situated at SLAC of a new detector for the particle identification in the forward region of the SuperB detector.This detector is based on time-of-flight (TOF) technique. To identify the particles with momentum up to 3 GeV/c and flight base around two meters we need a TOF detector able to measure the time with a precision of about 30 ps. To achieve this goal we have conceived a device producing Cherenkov light in a fused silica (quartz) radiator, by a charged particle, which then detected with very fast photodetectors and dedicated ultrafast electronics. We call it, the DIRC-like TOF detector.For what concern the photodetectors, the HAMAMATSU SL-10 MCP-PMT has been characterized at LAL test bunch and the time resolution of about 37 ps has been measured. The new 16-channel USB WaveCatcher electronics developed by LAL (CNRS/IN2P3) and CEA/IRFU has shown to have a jitter of less than 10 ps. The geometry of the quartz detector has been then carefully studied with Geant4 simulation. Which shows that the best detector geometry allow to reach the time resolution of about 90 ps per photoelectron with at least 10 photoelectrons detected, giving in average the desired 30 ps total time resolution.We have constructed a prototype of such device, using the quartz bars available from the Babar experiment, and we have installed it, in the SLAC Cosmic Ray Telescope. A time resolution of about 70 ps per photoelectron was obtained, in agreement with simulation.This proof-of-principle has convinced the SuperB Collaboration to adopt such a device as the baseline for the SuperB particle identification detector in the forward region. The delicate point which is still opened is the resistance of this detector to the machine background.In this thesis we also present preliminary studies of different types of background and their effect on the performances of the DIRC-like TOF detector. Radiative Bhabha process is by far the dominant source of background. The rate of the background photoelectrons caused mainly by the gammas with energy around 1.4 MeV is estimated to be ~480 kHz/cm^2 which corresponds to 2 C/cm^2 of integrated anode charge in 5 years. The neutron flux thought the DIRC-like TOF front end electronics is ~10^11/cm^2/year. These preliminary results are reassuring.
|
19 |
Jemné částice produkované krbovými kamny / 40/5000 Fine particles produced by the stoveŠkvařil, Ondřej January 2020 (has links)
This master thesis deals with problematics of fine particles produced during combustion in fireplace stoves. The theoretical part is focused on the analysis of the atmosphere, health consequences, solid pollutants, the formation of particles (origin), particle separation and how they are regulated by laws. Theoretical section of the thesis addresses analysis of biomass and its combustion. In the applied section are listed given methods of the particles measuring according to regulations, common errors during measurement and methods of identification of measured fine particles. Then follow specific measurements of the formed very fine particles produced by the SMPS method. Subsequently, the results of the measurement are evaluated and summarized in the conclusion.
|
20 |
Simulations And Experiments Of Plasma-Induced Effects In Silicon DetectorsGomez L, Ana Maria January 2023 (has links)
When an atomic nucleus undergoes fission, two fragments with different mass and kinetic energy are emitted. The highly unstable fission fragments (FFs) evaporate prompt neutrons soon after the nucleus splits. A precise measurement of both, the mass yield distribution of the FFs and the average prompt neutron emission, $\bar{\nu}$, is important not only for current nuclear technologies but also for the development of future technologies such as Generation IV nuclear power plants. Moreover, the experimental determination of the mass yield distributions, both pre- and post-neutron emission, is valuable for testing fission models. Additionally, a precise measurement of the average neutron multiplicity as a function of the FFs mass, <img src="http://www.diva-portal.org/cgi-bin/mimetex.cgi?$%5Cbar%7B%5Cnu%7D(A)$" data-classname="equation" data-title="" />, is crucial in the understanding of how the excitation energy is shared between nascent FFs. The VElocity foR DIrect particle identification spectrometer (VERDI) is designed to achieve pre- and post-fission mass distributions with resolutions between 1-2 u. VERDI is a double-energy double-velocity instrument that consists of two arms. On each arm is operated one Microchannel Plate detector (MCP) for the collection of the FFs start time and up to 32 Passive Implanted Planar Silicon (PIPS) detectors for the stop time and energy detection of the FFs. However, challenges in the experimental measurements with VERDI arise due to the high degree of ionization (plasma) in the detector material from the interaction with the FFs. The plasma causes a delay in the charge carriers' migration for the signal start, known as the plasma delay time effect (PDT). Furthermore, the recombination of charge carriers in the plasma causes a shrinking in the signal's height, known as pulse height defect (PHD). This phenomenon leads to inaccuracies in the measurement of FFs mass distributions and increased systematic uncertainties. Previous studies on PDT and PHD have shown varying behaviors across different detector types, which motivated dedicated studies in the type of PIPS detectors used in VERDI. An experimental campaign to characterize the PDT and PHD in PIPS detectors was conducted in the LOHENGRIN recoil separator, which is part of the ILL nuclear facility in Grenoble, France. Measurements of FFs in a range of masses between 80 u and 149 u, with energies between 20 MeV to 110 MeV, were taken to fully characterize six PIPS detectors. The resulting PDT and PHD values were 1 ns to 4 ns and 2 MeV to 10 MeV respectively. The PDT and PHD exhibited consistent energy and mass dependencies across the detectors, which enables the possibility of an event-by-event correction of VERDI data. In this thesis, the basis for discussing the results of the studies of the PDT and PHD effects will be presented.
|
Page generated in 0.1475 seconds