• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 4
  • 4
  • Tagged with
  • 33
  • 33
  • 13
  • 12
  • 12
  • 9
  • 8
  • 7
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development of a fast simulation method for particle-laden fluid interfaces and selected applications to problems involving drops

Gu, Chuan January 2018 (has links)
Solid particles tend to adhere to fluid interfaces under the action of capillary force. This adsorption process is robust and has been exploited in lots of applications from stabilisation of emulsions to micro fluidic fabrications. The resulting particle laden fluid interfaces can manifest solid-like behaviours. The modifi cation of the surface tension and the emergence of surface shear elasticity of a particle-covered drops are attributed to the particle-induced surface stress. This stress represents at the continuum level the microscopic effect of particle-particle interactions. Understanding the link between the surface stress and the particle arrangement are crucial for creating novel soft materials in the future. A challenge remains when carrying out numerical simulations of particle-laden fluid interfaces: the large separation of scales makes the direct numerical simulations extraordinary expensive. Physical features present in the system come from both the liquid meniscus on the surface of each particle and the fluid interfaces containing thousands of particles. Motivated by the need for a fast simulation method to study problems involving particle-laden fluid interface, this thesis presents a new numerical formulation named Fast Interface Particle Interaction (FIPI) that can be used to simulate a large number of solid particles absorbed on fluid interfaces at a moderate computational cost. The outstanding performance of this new method is attributed to the fact that particle-level phenomena are modelled with analytical or semi-empirical expressions while hydrodynamics and fluid interface morphology at larger scales are fully resolved. Two important studies of particle-covered drops have been carried out with FIPI. In the first one a particle-covered pendant drop is simulated. The result reveals that the FIPI can successfully capture the modulation of surface tension made by absorbed particles. Moreover, the information of anisotropic surface stress is now directly available on the fluid interfaces. This capability has not been achieved previously in both experiments and simulations. The anisotropic stress emerged on the surface of a pendant drop is caused by anisotropic arrangement of the particles on the interface which in turn is induced by stretching of the interface due to gravity. Once the surface tension of the fluid interface is reduced below zero, the Laplace pressure inside the drop becomes negative and the drop can buckle like a thin solid elastic shell under compression. In the second study, the behaviours of a particle covered spherical drop under compression have been explored. The simulation results indicate the possibilities of particle desorption as well as fluid interface buckling. The onset of desorption is highly correlated to small-scale monolayer undulations which can greatly amplify the normal forces pushing particles out of the interface. The behaviours of a particle-covered drop under compression depend on the combination of several parameters related to the properties of the particle and the surface pressure created by the monolayer.
2

Shock Dynamics in Particle-Laden Thin Films

Dupuy, B., Bertozzi, A.L., Hosoi, A.E. 22 April 2005 (has links)
We present theory and experiments for thin film particle-laden flow on an incline. At higher particle concentration and inclination angle, a new phenomenon is observed in which a large particle-rich ridge forms at the contact line. We derive a lubrication theory for this system which is qualitatively compared to preliminary experimental data. The ridge formation arises from the creation of two shocks due to the differential transport rates of fluid and particles. This parallels recent findings of double shocks in thermal-gravity driven flow [A. L. Bertozzi et. al., PRL, 81, 5169 (1998), J. Sur et. al., PRL 90, 126105 (2003), A. M¨unch, PRL 91, 016105 (2003)]. However, here the emergence of the shocks arises from a new mechanism involving the settling rates of the species. / PRL 94(11) March 25, 2005 117803 / NSF
3

An experimental study of particle-laden jet interactions with cocurrent flows

Chinnapalaniandi, Periasamy January 1992 (has links)
No description available.
4

Turbulence Modulation of Polydisperse Particles in a Square Particle-Laden Jet: Numerical Investigation

Gray, Sandria Lutrica 06 June 2012 (has links)
The purpose of this study is to numerically investigate the turbulence modulation of polydisperse particles in a square particle-laden jet. Turbulence modulation describes the effects of fluctuating velocity and intensity when the particles and continuous fluid interact in a turbulent flow field. The rate at which turbulence modulation is altered is dependent upon parameters such as particle size, mass loading, Stokes number, coupling, volume fraction and mechanisms of turbulence modulation. This study modifies the analytical model developed by Yarin and Hetsroni (1993) to account for the transitional drag regime for coarse polydisperse particles. The particles under study are dilute, inert and spherical, with relatively high Stokes numbers, and classified as having two-way coupling with the fluid. The new analytical model is compared to numerical results using the Computational Fluid Dynamics (CFD) software FLUENT (ANSYS, Inc.). The turbulence model employed is the standard k-ε model. This study will analyze the effects of varying mass content and particle ratios to investigate how turbulence modulation is influenced. The new model and the CFD results show good agreement in the cases where the mass contents of each particle size are equal. This study will also look into the effects of polydispersion, and the concentration distribution, for indoor air applications. It was found that, in certain cases, the monodisperse assumption slightly over-predicts the concentration distribution in the enclosed region. / Master of Science
5

Buckling of Particle-Laden Interfaces

Dias Kassuga, Theo 07 November 2014 (has links)
We study the buckling of an oil-water interface populated by micron-sized latex particles using a Langmuir trough. We extend pre-existing results to the micron-range with different capillary length and compare the experimental data to the existing theoretical framework. An unexpected trend for the dominant wavelength of buckling is observed, suggesting that there is a transition between regimes in the micron-range. A mechanism for the new regime is proposed. Cascading is reported, as well as novel kinds of transition between wavelengths within the same particle raft. Lastly, the effect of compression on the macroscopic arrangement of particles is investigated, as well as its effect on the buckling wavelength.
6

A triboelectric-based method for rapid characterization of powders

Mehrtash, Hadi January 2021 (has links)
In this research, a tribocharging model based on the prominent condenser model was used in combination with an Eulerian-Lagrangian CFD model to simulate particle tribocharging in particle-laden flows. The influence of different parameters on particle-wall interactions during particle transport in a particle-laden pipe flow was elucidated. An artificial neural network was developed for predicting particle-wall collision numbers based on a database obtained through CFD simulations. The particle-wall collision number from the CFD model was validated against experimental data in the literature. The tribocharging and CFD models were coupled with the experimental tribocharging data to estimate the contact potential difference of powders, which is a function of contact surfaces' work functions and depends on the physicochemical properties of materials. While the contact potential difference between the particles and wall is an essential parameter in the tribocharging models, the accurate measurement of the property is a complex process requiring a highly controlled environment and special equipment. The results from this research also confirm that particle tribocharging is very much dependant on the particle-wall collision number influenced by various parameters, such as particle size and density, air velocity, and pipe dimensions. Plotting the experimentally measured charge-to-mass ratios against the calculated contact potential differences for samples with different protein contents uncovered a linear trend, which opens a novel approach for protein quantification of powders for a given particle size. Therefore, an algorithm is proposed for rapid quantification of protein content and particle size determination of samples during transport in particle-laden flows based on the triboelectric charge measurement. The algorithm requires a CFD-based artificial neural network to estimate the particle-wall interactions based on the hydrodynamic characteristics of the particles and flow systems. / Thesis / Master of Applied Science (MASc)
7

Transition in Particle-laden Flows

Klinkenberg, Joy January 2013 (has links)
This thesis presents the study of laminar to turbulent transition of particle laden flows. When a flow becomes turbulent, the drag increases one order of magnitude compared to a laminar flow, therefore, much research is devoted to understand and influence the transition. Previous research at the Linne Flow Centre at KTH has concentrated on the understanding of the bypass transition process of single-phase fluids. Though there are still questions, the principles of this process are now, more or less, known. However, little is known of the influence of particles on transition. While experiments in the 1960s already showed that particles can reduce the friction in turbulent channel flows significantly. The question explored in this thesis is whether this can be attributed to their influence on transition. The initial onset of transition has been investigated with both modal and non-modal linear stability analysis in a Poiseuille flow between two parallel plates. Particles are introduced as a second fluid and they are considered to be solid, spherical and homogeneously distributed. When the fluid density is much smaller than the particle density, ξ (≡ ρf/ρp) &lt;&lt; 1, an increase of the critical Reynolds number is observed. However, transient growth of streamwise vortices resulting in streaks is not affected by inclusion of particles. Particles with ξ ∼ 1 hardly seem to have an effect on stability. Although linear analysis shows that particles hardly influence the transient growth of disturbances, they might affect other (non-linear) stages of transition. To investigate such effects, the full Navier-Stokes equations for 3D Poiseuille flow between two parallel plates are numerically solved and particles are introduced as points with two-way coupling. For particles in a channel flow with ξ&lt;&lt;1, results show that the transition to turbulence is delayed for mass fractions ƒ (=mp N / ρf) larger than 0.1. For a mass fraction of ƒ=0.4 the initial disturbance energy needed to get a turbulent flow increases with a factor of four. Even if lower particle mass fractions ƒ are used, locally there could be large particle mass fractions. Therefore, the next step is to investigate the generation of local large particle mass fractions ƒ. Such particle clusters can be as large as the typical flow structures in the flow, like streak width and vortex size. Then they might change the flow field and (in)stability mechanisms. Numerical simulations of bypass transition in a boundary layer flow are used to determine whether particles cluster and where they tend to cluster. It is found that point particles with ξ&lt;&lt;1 and a large particle relaxation time tend to move in the low speed regions of the flow. In case of streaks, the low speed streaks are most favourable. For smaller particle relaxation times, particles act as tracers and do not have a preferential position and are homogeneously distributed. For particles with ξ∼1 the linear stability analysis showed no transition effect at any ƒ. However, one effect neglected until now is that of particle size. For particles with dimensions of the same order of magnitude of the flow disturbance, particles might influence the flow field. To investigate whether such particles migrate towards positions where they can affect transition some exploratory numerical simulations and experiments are performed. Numerically, the lateral migration of large particles (H/d=5) with ξ=1 in a 3D Poiseuille flow between two parallel plates is investigated. In laminar channel flow, large particles tend to move laterally due to shear to an equilibrium position. For a single large particle some key parameters for migration are identified: the size of the particle and the velocity of the fluid. When multiple particles are present, they tend to form particle trains. If particles are close, they influence each other and the equilibrium position shifts towards the wall, where the final position is dependent on the inter particle spacing. Also, not one steady equilibrium position is present, but particles move around an equilibrium position. Experimentally, migration of particles in bypass transition with ξ=1 is investigated to find out whether neutrally buoyant particles have a preferential position within streaks. The first results with tracer particles (d∼50μm) and few large particles (d∼200μm) do not show detectable preferential positioning. / <p>QC 20131030</p>
8

Mass loading and Stokes number effects in steady and unsteady particle-laden jets.

Foreman, Richard J. January 2008 (has links)
In single phase, steady, turbulent axisymmetric jets, the time-averaged velocity field can be characterised by the decay in centreline velocity and increased spread with increasing distance from the jet orifice. In a two-phase or ‘particle-laden’ jet, the particles will modulate the jet turbulence and exchange momentum with the gas phase. Consequently, these effects reduce both the centreline velocity decay and spreading rates with respect to the single-phase jet. Empirical exponential scaling factors were found by previous authors to describe the reduced centreline decay and spreading rates well for low Stokes numbers. In this thesis, power-law scaling factors are found to scale well a wide range of centreline velocity decay and spreading rate data published over the past 40 years, for a wide range of Stokes numbers. The power-law scaling is composed of three different regimes. For low Stokes numbers St₀ ≲20, it is found that the gas phase centreline velocity, u₀/uc collapses if plotted as a function of x/D(1 + Ø₀)⁻¹, and the velocity profile half widths r₁/ ₂ collapse if plotted as a function of x/D(1+Ø₀)⁻¹. Here, u₀ is the exit velocity, Ø₀ is the exit mass loading, x is the axial coordinate and D is the pipe diameter. For intermediate Stokes numbers, u₀/uc collapses if plotted as a function of x/D(1 + Ø₀)⁻¹ and r₁/ ₂ collapses if plotted as a function of x/D(1 + Ø₀)⁻¹/². For high Stokes numbers St₀ ≳ 200, u₀/uc collapses if plotted as a function of x/D(1 + Ø₀)⁻¹/² and the half width is approximately independent of Ø₀. In addition to the velocity of the gas phase, other aspects of particle- laden jets are found to be amenable to scaling by power-law functions. It is found that reported solid phase mass flux data scales similarly to gas phase measurements. Limited solid phase concentration and entrainment measurements reported in the literature are also found to scale by power-law functions. Whereas that limited data was obtained from the literature, measurements of the distribution of particles in particle-laden jets were conducted to further assess the validity of the scaling regimes to the solid phase. A planar light scattering technique is conducted to measure the distribution of particles in an axisymmetric jet and their subsequent scaling (or lack thereof) are reported for a variation in Ø₀, Stokes number and gas phase jet exit density. For Stokes numbers based on the pipe friction velocity St* ₀ ∼ 1, half widths of particle distributions were found to scale with x/D(1+Ø₀)⁻¹/² . The apparent centreline concentration was found to be independent of Ø₀ at this same St* ₀ . For Stokes numbers based on the pipe friction velocity St*₀ < 1, half widths are independent of Ø₀. The effect of the other parameters, i.e. Stokes number and density ratio, on centreline distributions and half widths are also investigated. Measurements of particle distributions, delivered via an annular channel, in a triangular oscillating jet (OJ) flow are also reported for a variation in momentum ratio, the ratio of OJ momentum to channel momentum and mass loading. The results of the variation in momentum ratio on particle distributions are compared with an existing precessing jet (PJ) study. It is the aim of this study to determine the experimental conditions for which the OJ nozzle is superior to the PJ nozzle. The use of an OJ nozzle is preferable at an industrial scale by virtue of its lower driving pressure compared with a PJ nozzle. It is found that particle distributions in a PJ flow spread at a greater rate with increasing momentum ratio compared with the spread of particles in an OJ flow. However, at momentum ratios approximately less than unity, the absolute spread from an OJ is greater. This also corresponds to nozzle driving pressure less than approximately 10kPA. For an increase in mass loading, the spread of particle distribution in the OJ decreases and recirculation increases. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1337352 / Thesis (M.Eng.Sc.) -- University of Adelaide, School of Mechanical Engineering, 2008
9

Mass loading and Stokes number effects in steady and unsteady particle-laden jets.

Foreman, Richard J. January 2008 (has links)
In single phase, steady, turbulent axisymmetric jets, the time-averaged velocity field can be characterised by the decay in centreline velocity and increased spread with increasing distance from the jet orifice. In a two-phase or ‘particle-laden’ jet, the particles will modulate the jet turbulence and exchange momentum with the gas phase. Consequently, these effects reduce both the centreline velocity decay and spreading rates with respect to the single-phase jet. Empirical exponential scaling factors were found by previous authors to describe the reduced centreline decay and spreading rates well for low Stokes numbers. In this thesis, power-law scaling factors are found to scale well a wide range of centreline velocity decay and spreading rate data published over the past 40 years, for a wide range of Stokes numbers. The power-law scaling is composed of three different regimes. For low Stokes numbers St₀ ≲20, it is found that the gas phase centreline velocity, u₀/uc collapses if plotted as a function of x/D(1 + Ø₀)⁻¹, and the velocity profile half widths r₁/ ₂ collapse if plotted as a function of x/D(1+Ø₀)⁻¹. Here, u₀ is the exit velocity, Ø₀ is the exit mass loading, x is the axial coordinate and D is the pipe diameter. For intermediate Stokes numbers, u₀/uc collapses if plotted as a function of x/D(1 + Ø₀)⁻¹ and r₁/ ₂ collapses if plotted as a function of x/D(1 + Ø₀)⁻¹/². For high Stokes numbers St₀ ≳ 200, u₀/uc collapses if plotted as a function of x/D(1 + Ø₀)⁻¹/² and the half width is approximately independent of Ø₀. In addition to the velocity of the gas phase, other aspects of particle- laden jets are found to be amenable to scaling by power-law functions. It is found that reported solid phase mass flux data scales similarly to gas phase measurements. Limited solid phase concentration and entrainment measurements reported in the literature are also found to scale by power-law functions. Whereas that limited data was obtained from the literature, measurements of the distribution of particles in particle-laden jets were conducted to further assess the validity of the scaling regimes to the solid phase. A planar light scattering technique is conducted to measure the distribution of particles in an axisymmetric jet and their subsequent scaling (or lack thereof) are reported for a variation in Ø₀, Stokes number and gas phase jet exit density. For Stokes numbers based on the pipe friction velocity St* ₀ ∼ 1, half widths of particle distributions were found to scale with x/D(1+Ø₀)⁻¹/² . The apparent centreline concentration was found to be independent of Ø₀ at this same St* ₀ . For Stokes numbers based on the pipe friction velocity St*₀ < 1, half widths are independent of Ø₀. The effect of the other parameters, i.e. Stokes number and density ratio, on centreline distributions and half widths are also investigated. Measurements of particle distributions, delivered via an annular channel, in a triangular oscillating jet (OJ) flow are also reported for a variation in momentum ratio, the ratio of OJ momentum to channel momentum and mass loading. The results of the variation in momentum ratio on particle distributions are compared with an existing precessing jet (PJ) study. It is the aim of this study to determine the experimental conditions for which the OJ nozzle is superior to the PJ nozzle. The use of an OJ nozzle is preferable at an industrial scale by virtue of its lower driving pressure compared with a PJ nozzle. It is found that particle distributions in a PJ flow spread at a greater rate with increasing momentum ratio compared with the spread of particles in an OJ flow. However, at momentum ratios approximately less than unity, the absolute spread from an OJ is greater. This also corresponds to nozzle driving pressure less than approximately 10kPA. For an increase in mass loading, the spread of particle distribution in the OJ decreases and recirculation increases. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1337352 / Thesis (M.Eng.Sc.) -- University of Adelaide, School of Mechanical Engineering, 2008
10

Experimental study of particle-induced turbulence modification in the presence of a rough wall

Tay, Godwin Fabiola Kwaku 01 June 2015 (has links)
This thesis reports an experimental investigation of low Reynolds number particle-laden turbulent flows in a horizontal plane channel. Experiments were conducted over a smooth wall and over two rough surfaces made from sand grain and gravel of relative roughness k/h ≈ 0.08 and 0.25, respectively, where k is the roughness height and h is the channel half-height. The flow was loaded with small solid particles with diameters less than 1/10 of the length scale of the energy-containing eddies, and whose concentrations decreased with time due to sedimentation. A novel particle image velocimetry (PIV) method that employed colour filtering for phase discrimination was used to measure the velocities of the fluid and solid particles. Over the smooth wall, the particles mean velocity, turbulence intensities and Reynolds shear stress matched those of the unladen flow very well. There were substantial differences between particle and fluid profiles over the rough wall, which include more rapid reduction in the particle mean velocity and significantly larger turbulence intensities and Reynolds shear stress compared to the unladen flow values. Stratification of the particle concentration led to attenuation of the fluid wall-normal turbulence intensity. This effect was nullified by the roughness perturbation leading to collapse of the wall-normal turbulence intensities over the rough wall. The streamwise turbulence intensity also collapsed over the rough wall but it was found that particles augmented the fluid Reynolds shear stress due to enhanced correlation between the rough wall streamwise and wall-normal velocity fluctuations. A quadrant decomposition of the fluid Reynolds shear stress also revealed corresponding enhancements in ejections and sweeps, the dominant contributors to the Reynolds shear stress, over the rough wall. Based on two-point correlations between the velocity fluctuations and between the velocity fluctuations and swirling strength, it was concluded that both wall roughness and particles modified the turbulence structure by increasing the size of the larger-scale structures. The idea of eddies growing from the wall, thereby enhancing communication between the inner layer and outer parts of the flow, has implications for wall-layer models that assume that the outer layer is detached from the turbulence in the inner region.

Page generated in 0.0453 seconds