Spelling suggestions: "subject:"partition coefficients"" "subject:"partition eoefficients""
21 |
Fluorine and chlorine fractionation in the sub-arc mantle : an experimental investigation / Fractionemment du fluor et du chlore dans le manteau sub-arc : une approche expérimentaleDalou, Célia 21 January 2011 (has links)
Les éléments volatils libérés de la plaque plongeante lors de la subduction jouent un rôle fondamental durant la formation des magmas d'arc dans le coin mantellique. Depuis quelques années, les développements des techniques d'analyse par sonde ionique ont permis l'analyse de ces éléments, en particulier F et Cl, dans les magmas d'arc, et notamment dans les magmas d'arc primaires grâce aux avancées des études sur les inclusions magmatiques. Une récente étude des inclusions magmatiques du Mont Shasta (E. U.) (Le Voyer et al., 2010) a montré que le fractionnement du F et du Cl apportait des informations sur la genèse des magmas d'arc. Afin de caractériser la source de ces magmas, j'ai étudié les coefficients de partage du fluor et du chlore. Dans cette étude, je présente les premiers coefficients de partage du F et du Cl, entre des liquides de fusions silicatés anhydres et hydratés et des minéraux mantelliques tels que olivine, orthopyroxène, clinopyroxène, plagioclase, grenat ainsi que pargasite et phlogopite. Les valeurs sont issues de 300 mesures dans 24 expériences de fusion, réalisées entre 8 et 25 kbars et, 1180 et 1430˚C. Les faibles concentrations en F et Cl dans les minéraux ont été analysées par la sonde ionique Cameca IMF 1280 de WHOI en utilisant le mode d'ions secondaires négatifs. Les résultats montrent que DOpx/meltF varient de 0.123 à 0.021 et DCpx/meltF de 0.153 à 0.083, tandis que DOpx/meltCl varient de 0.002 à 0.069 et DCpx/meltCl de 0.008 à 0.015. De plus, DOl/meltF de 0.116 à 0.005 et DOl/meltCl de 0.001 à 0.004 ; DGrt/meltF de 0.012 à 0.166 et DGrt/meltCl de 0.003 à 0.087 avec l'augmentation de la teneur en eau et la diminution de la température dans les expériences. Je montre aussi que le F est compatible dans la phlogopite (DPhl/meltF >1.2) alors qu'il est incompatible dans la pargasite (DAmp/meltF de 0.36 à 0.63). A l'inverse, Cl est plus incompatible dans la phlogopite (DPhl/meltCl en moyenne 0.09±0.02), que dans la pargasite (DAmp/meltCl de 0.12 à 0.38). Cette étude démontre que F et Cl sont substitués dans des sites spécifiques de l'oxygène, ce qui les rend plus sensibles que les éléments traces aux variations de chimie des cristaux et de la quantité d'eau, et donc aux conditions de fusion. En utilisant ces nouveaux coefficients de partage, j'ai modélisé la fusion de lithologies potentielles du manteau sub-arc permettant de 1) déterminer la quantité de fluide aqueux impliqué dans la fusion, 2) distinguer la fusion induite par apport de fluides de la fusion d'une source à minéraux hydratés et 3) la fusion d'une lithologie à pargasite de celle à phlogopite, et montre que la source de certains magmas primaires d'arc, par exemple d'Italie, contient de la pargasite et de la phlogopite, tandis d'autres magmas primaires d'arc résultent d'une fusion par apport de fluides. / Volatile elements released from the subducting slab play a fundamental role during the formation of arc magmas in the mantle wedge. Advances of melt inclusion studies enlarged the data on volatile abundance in arc magmas, and it is now possible to characterize some volatile contents in arc primary magmas, in particular F and Cl. A recent study of Mt Shasta melt inclusions (LeVoyer et al., 2010) shows that fractionation of F and Cl potentially contains information about arc magma genesis. In order to trace the source of arc magmas, fluorine and chlorine partitioning was investigated. Here, I present new experimental determinations of Cl and F partition coefficients between dry and hydrous silicate melts and mantle minerals: olivine, orthopyroxene, clinopyroxene, plagioclase, garnet and also pargasite and phlogopite. The values were compiled from more than 300 measurements in 24 melting experiments, conducted between 8 and 25 kbars and between 1180 and 1430˚C. The low abundance F, Cl measurements in minerals were done by Cameca IMF 1280 at WHOI using the negative secondary ion mode. The results show that DOpx/meltF ranges from 0.123 to 0.021 and DCpx/meltF ranges from 0.153 to 0.083, while Cl partition coefficient varies from DOpx/meltCl from 0.002 to 0.069 and DCpx/meltCfrom 0.008 to 0.015, as well. Furthermore, DOl/meltF ranges from 0.116 to 0.005 and DOl/meltCl from 0.001 to 0.004; DGrt/meltF ranges from 0.012 to 0.166 and DGrt/meltCl from 0.003 to 0.087 with the increasing water amount and decreasing temperature. I also show that F is compatible in phlogopite DPhl/meltF > 1.2) while DAmp/meltF is incompatible in pargasite DAmp/meltF from 0.36 to 0.63). On the contrary, Cl is more incompatible in phlogopite (DPhl/meltCl > 1.2 on average 0.09 ± 0.02), than in pargasite (DPhl/meltCl from 0.12 to 0.38). This study demonstrates that F and Cl are substituted in specific oxygen site in minerals that lead then to be more sensitive than trace elements to crystal chemistry and water amount variations thus melting conditions. Using those new partition coefficients, I modelled melting of potential sub-arc lithologies with variable quantity aqueous-fluid. This model is able to decipher 1) amount of aqueous-fluid involved in melting, 2) melting induced by fluid or melting of an hydrous mineral-bearing source and 3) melting of either pargasite-bearing lithology or phlogopite-bearing lithology and shows that sources of some primitive melts, for instance from Italy, bear pargasite and phlogopite, while some primitve melts seem to be the results of fluid-induced melts.
|
22 |
Etude expérimentale des propriétés de fusion du manteau inférieur / Experimental investigation of the deep mantle melting propertiesLo Nigro, Giacomo 24 June 2011 (has links)
Au cours de la dernière phase d’accrétion, les planètes terrestres ont connu des impacts géants violents et très énergétiques. A la suite du chauffage causé par les impacts, la Terre primitive était partiellement ou totalement fondue, et un océan magmatique a été formé dans la couche externe de la Terre. Le refroidissement successif de l’océan magmatique a causé la cristallisation fractionnée du manteau primitif. Cependant, il reste beaucoup d’incertitudes à propos de l’accrétion de la Terre primitive, comme la profondeur et la durée de vie d’un (ou plusieurs) océan(s) magmatique(s), l’effet de la recristallisation du manteau sur la ségrégation chimique entre les différents réservoirs de la Terre et ainsi de suite. La connaissance des propriétés de fusion du manteau profond est important aussi pour examiner la possibilité d’une fusion partielle actuellement. L’objectif était d’aborder quelques problèmes concernant le manteau inférieur terrestre : Quelle est la séquence de fusion entre les phases dominantes dans le manteau inférieur ? Est-ce qu’on peut expliquer la zone à ultra-basse vélocité (ULVZ) avec la fusion partielle d’un manteau pyrolytique (ou chondritique) ? Quel est le partage du fer entre les phases silicatées liquides et solides dans le manteau profond ? Est-ce qu’on peut donner des informations nouvelles sur les propriétés d’un océan magmatique profond à partir des courbes de fusion du manteau primitif ? Dans cette étude les courbes de fusion et les relations de fusion ont été analysées en utilisant la cellule à enclume de diamant chauffé au laser (LH-DAC) pour des pressions entre 25 et 135 GPa et des températures jusqu’à plus que 4000 K, i.e. pour des conditions de P-T qui correspondent au manteau inférieur terrestre entier. Les compositions utilisées ont été le raccord entre MgO et MgSiO3 et une composition de type chondritique pour le manteau terrestre. J’ai utilisé deux techniques in-situ de radiation-synchrotron pour déduire les propriétés de fusion à hautes pressions ; la diffractométrie au rayons-X et la fluorescence au rayons-X. Les nouveaux résultats obtenus dans cette étude sont : (...) / During the final stage of accretion, terrestrial planets experienced violent and highly energetic giant impacts. As a consequence of impact heating, the early Earth was partially or wholly molten, forming a magma ocean in the outer layer of Earth. Subsequent cooling of the magma ocean has led to fractional crystallization of the primitive mantle. Many unknowns remain about accretion of the early Earth, such as extension depth and life time of the magma ocean(s), role of mantle recrystallization on the chemical segregation between the different Earth reservoirs, and so on. The knowledge of melting properties of the deep mantle is also important to investigate the possibility of partial melting at the present time. The aim of this study was to tackle a few major questions concerning the Earth lower mantle : What is the melting sequence between the main lower mantle phases ? Can we explain the ultra-low-velocity zones (ULVZ) by partial melting of pyrolitic (or chondritic) mantle ? How does iron partition between liquid and solid silicate phases in the deep mantle ? Can we provide new information on the properties of the deep magma ocean based on the melting curve of the primitive mantle ? Melting curves and melting relations have been investigated using the laser-heated diamond anvil cell (LH-DAC) for pressure between 25 and 135 GPa and temperature up more than 4000 K, i.e. at P-T conditions corresponding to the entire Earth’s lower mantle. Compositions investigated were the join between MgO and MgSiO3 and a model chondritic-composition for the Earth mantle. Two different in situ synchrotron radiation techniques have been used to infer melting properties at high pressures ; X-ray diffraction and X-ray fluorescence spectroscopy. The new results obtained in this study include : (...)
|
23 |
Détermination des coefficients de partage sang:air, urine:air et plasma:air de composés organiques volatils d’origine microbienneBerkane, Wissam 12 1900 (has links)
Résumé:
De nombreuses études ont établi que l’exposition aux moisissures intérieures peut être nuisible à la santé. Dans une récente étude, 21 composés organiques volatils microbiens (COVM) ont été sélectionnés comme biomarqueurs potentiels de l’exposition aux moisissures intérieures. L’objectif du projet était de déterminer les coefficients de partage (CP) sang:air, urine:air, plasma:air et eau:air pour ces composés, paramètres utilisés dans la prédiction de la toxicocinétique des xénobiotiques. Pour y parvenir, la méthode de flacons à l’équilibre a été utilisée. Les COVM (1.57-2.01 µg) injectés dans des flacons (20 ml) hermétiquement scellés contenant soit 0.5 ml de matrice (flacons test) ou simplement de l’air (flacons références) ont été incubés 60 min à 37⁰ C sous agitation continue. La quantification des COVM dans l’espace de tête des flacons (test et références) a été ensuite faite par chromatographie en phase gazeuse couplée à la spectrométrie de masse (GC-MS/MS). Les CP de 19 COVM variaient entre 78 et 4721 pour sang:air, 14 et 3586 pour urine:air, 64 et 5604 pour plasma:air et 16 et 2210 pour eau:air. Les CP eau:air étaient étroitement liés aux CP urine:air pour 17 COVM (R2 = 0,97, pente =1,001) suggérant que la valeur de CP eau:air (lorsqu’inférieur à103) peut être un substitut au CP urine:air. L’étude des ratios sang:urine indique que six COVM seraient nettement plus concentrés dans le sang, matrice de choix pour ces composés. Les données générées par cette étude faciliteront le développement de modèles pharmacocinétiques de COVM et le paramétrage de leurs prélèvements en tant que biomarqueurs de l’exposition aux moisissures intérieures. / Abstract:
Numerous studies have established that exposure to indoor molds can be harmful to health. In a recent study, 21 microbial volatile organic compounds (mVOCs) were selected as potential biomarkers of indoor mold exposure. The objective of the project was to determine the blood:air, urine:air, plasma:air, and water:air partition coefficients (PCs) for these compounds, parameters used in predicting the toxicokinetics of xenobiotics. To achieve this, the vial-equilibration method was used. mVOCs (1.57-2.01 µg) were injected into hermetically sealed vials (20 ml) containing either 0.5 ml of matrix (test vials) or simply air (reference vials) and were incubated for 60 min at 37 ⁰C under continuous agitation. Quantification of mVOCs in the headspace of the vials (test and reference) was then performed by gas chromatography mass spectrometry (GC-MS/MS). The PCs of 19 mVOCs ranged from 78 and 4721 for blood:air, 14 and 3586 for urine:air, 64 and 5604 for plasma:air, and 16 and 2210 for water:air. Water:air PCs were closely related to urine:air PCs for 17 mVOCs (R2 = 0.97, slope =1.001) suggesting that the water:air PC value (when less than 103) may be a surrogate for the urine:air PC. The blood:urine ratio study indicates that six mVOCs would be significantly more concentrated in blood, the matrix of choice for these compounds. The data generated from this study will facilitate the development of pharmacokinetic models of mVOCs and the parameterization of their sampling as biomarkers of indoor mold exposure.
|
24 |
The Influence of Dissolved Organic Matter on the Fate of Polybrominated Diphenyl Ethers (PBDEs) in the EnvironmentWei-Haas, Maya Li 08 October 2015 (has links)
No description available.
|
25 |
Risk Assessment Approach for Evaluating Recycled Materials Use in Road Construction: A Pilot StudyFahd, Faisal January 2008 (has links)
No description available.
|
Page generated in 0.1297 seconds