• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Effectivess of Using Geotextiles in Flexible Pavements: Life-Cycle Cost Analysis

Yang, Shih-Hsien 28 March 2006 (has links)
Using geotextiles in secondary roads to stabilize weak subgrades has been a well accepted practice over the past thirty years. However, from an economical point of view, a complete life cycle cost analysis (LCCA), which includes not only costs to agencies but also costs to users, is urgently needed to assess the benefits of using geotextile in secondary road flexible pavement. In this study, a comprehensive life cycle cost analysis framework was developed and used to quantify the initial and the future cost of 25 representative design alternatives. A 50 year analysis cycle was used to compute the cost-effectiveness ratio for the design methods. Four flexible pavement design features were selected to test the degree of influence of the frame's variables. The analysis evaluated these variables and examined their impact on the results. The study concludes that the cost effectiveness ratio from the two design methods shows that the lowest cost-effectiveness ratio using Al-Qadi's design method is 1.7 and the highest is 3.2. The average is 2.6. For Perkins' design method, the lowest value is 1.01 and the highest value is 5.7. The average is 2.1. The study also shows when user costs are considered, the greater TBR value may not result in the most effective life-cycle cost. Hence, for an optimum secondary road flexible pavement design with geotextile incorporated in the system, a life cycle cost analysis that includes user cost must be performed. / Master of Science
2

Development of PCI-based Pavement Performance Model for Management of Road Infrastructure System

January 2015 (has links)
abstract: The accurate prediction of pavement network condition and performance is important for efficient management of the transportation infrastructure system. By reducing the error of the pavement deterioration prediction, agencies can save budgets significantly through timely intervention and accurate planning. The objective of this research study was to develop a methodology for calculating a pavement condition index (PCI) based on historical distress data collected in the databases from Long-Term Pavement Performance (LTPP) program and Minnesota Road Research (Mn/ROAD) project. Excel™ templates were developed and successfully used to import distress data from both databases and directly calculate PCIs for test sections. Pavement performance master curve construction and verification based on the PCIs were also developed as part of this research effort. The analysis and results of LTPP data for several case studies indicated that the study approach is rational and yielded good to excellent statistical measures of accuracy. It is believed that the InfoPaveTM LTPP and Mn/ROAD database can benefit from the PCI templates developed in this study, by making them available for users to compute PCIs for specific road sections of interest. In addition, the PCI-based performance model development can be also incorporated in future versions of InfoPaveTM. This study explored and analyzed asphalt pavement sections. However, the process can be also extended to Portland cement concrete test sections. State agencies are encouraged to implement similar analysis and modeling approach for their specific road distress data to validate the findings. / Dissertation/Thesis / Masters Thesis Civil Engineering 2015

Page generated in 0.0854 seconds