• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 8
  • 8
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Soluções das equações de campo de Einstein para fluidos perfeitos estáticos com simetria esférica

Ivo Martins Daher 07 August 2008 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Nesta dissertação, procuramos soluções exatas das equações de campo de Einstein em Relatividade Geral que descrevem um fluido perfeito em um espaço-tempo estático com simetria esférica. A técnica utilizada para encontrar essas soluções é o algoritmo de Kovacic, que pode ser aplicado a equações diferenciais ordinárias lineares e homogêneas de segunda ordem com coeficientes racionais. Esse algoritmo é capaz de nos dar soluções fechadas em termos de funções liouvillianas, se tal equação tiver esse tipo de solução. Para esse fim, vários sistemas de coordenadas foram investigados até encontrar o que fosse mais adequado à aplicação do algoritmo. Impondo que a função da métrica 11 g seja racional, ficamos com uma equação diferencial linear e homogênea de segunda ordem que tem coeficientes racionais. Nesse trabalho, as formas arbitradas foram: g11=-A/4x x-z1/x-Z1, g11=-A/4x x-z1/(x-Z1)(x-Z2), g11=-A/4x (x-z1) (x-z2)/x-Z1 e g11= -A/4x (x-z1) (x-z2)/ 4x(x-Z1) (x-Z2) onde x é uma coordenada espacial da métrica e Α, z1 , z2 , Z1 e Z2 são parâmetros dos modelos. Depois de obter soluções analíticas, verificamos se elas satisfazem determinadas condições físicas e, então, poderiam ser utilizadas como modelos de estrelas de nêutrons sem rotação (estrelas de alta densidade).
2

Soluções das equações de campo de Einstein para fluidos perfeitos estáticos com simetria esférica

Ivo Martins Daher 07 August 2008 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Nesta dissertação, procuramos soluções exatas das equações de campo de Einstein em Relatividade Geral que descrevem um fluido perfeito em um espaço-tempo estático com simetria esférica. A técnica utilizada para encontrar essas soluções é o algoritmo de Kovacic, que pode ser aplicado a equações diferenciais ordinárias lineares e homogêneas de segunda ordem com coeficientes racionais. Esse algoritmo é capaz de nos dar soluções fechadas em termos de funções liouvillianas, se tal equação tiver esse tipo de solução. Para esse fim, vários sistemas de coordenadas foram investigados até encontrar o que fosse mais adequado à aplicação do algoritmo. Impondo que a função da métrica 11 g seja racional, ficamos com uma equação diferencial linear e homogênea de segunda ordem que tem coeficientes racionais. Nesse trabalho, as formas arbitradas foram: g11=-A/4x x-z1/x-Z1, g11=-A/4x x-z1/(x-Z1)(x-Z2), g11=-A/4x (x-z1) (x-z2)/x-Z1 e g11= -A/4x (x-z1) (x-z2)/ 4x(x-Z1) (x-Z2) onde x é uma coordenada espacial da métrica e Α, z1 , z2 , Z1 e Z2 são parâmetros dos modelos. Depois de obter soluções analíticas, verificamos se elas satisfazem determinadas condições físicas e, então, poderiam ser utilizadas como modelos de estrelas de nêutrons sem rotação (estrelas de alta densidade).
3

Lanczos potentialer i kosmologiska rumtider / Lanczos Potentials in Perfect Fluid Cosmologies

Holgersson, David January 2004 (has links)
<p>We derive the equation linking the Weyl tensor with its Lanczos potential, called the Weyl-Lanczos equation, in 1+3 covariant formalism for perfect fluid Bianchi type I spacetime and find an explicit expression for a Lanczos potential of the Weyl tensor in these spacetimes. To achieve this, we first need to derive the covariant decomposition of the Lanczos potential in this formalism. We also study an example by Novello and Velloso and derive their Lanczos potential in shear-free, irrotational perfect fluid spacetimes from a particular ansatz in 1+3 covariant formalism. The existence of the Lanczos potential is in some ways analogous to the vector potential in electromagnetic theory. Therefore, we also derive the electromagnetic potential equation in 1+3 covariant formalism for a general spacetime. We give a short description of the necessary tools for these calculations and the cosmological formalism we are using.</p>
4

Lanczos potentialer i kosmologiska rumtider / Lanczos Potentials in Perfect Fluid Cosmologies

Holgersson, David January 2004 (has links)
We derive the equation linking the Weyl tensor with its Lanczos potential, called the Weyl-Lanczos equation, in 1+3 covariant formalism for perfect fluid Bianchi type I spacetime and find an explicit expression for a Lanczos potential of the Weyl tensor in these spacetimes. To achieve this, we first need to derive the covariant decomposition of the Lanczos potential in this formalism. We also study an example by Novello and Velloso and derive their Lanczos potential in shear-free, irrotational perfect fluid spacetimes from a particular ansatz in 1+3 covariant formalism. The existence of the Lanczos potential is in some ways analogous to the vector potential in electromagnetic theory. Therefore, we also derive the electromagnetic potential equation in 1+3 covariant formalism for a general spacetime. We give a short description of the necessary tools for these calculations and the cosmological formalism we are using.
5

Generalized EMP and Nonlinear Schrodinger-type Reformulations of Some Scaler Field Cosmological Models

D'Ambroise, Jennie 01 May 2010 (has links)
We show that Einstein’s gravitational field equations for the Friedmann- Robertson-Lemaître-Walker (FRLW) and for two conformal versions of the Bianchi I and Bianchi V perfect fluid scalar field cosmological models, can be equivalently reformulated in terms of a single equation of either generalized Ermakov-Milne- Pinney (EMP) or (non)linear Schrödinger (NLS) type. This work generalizes or presents an alternative to similar reformulations published by the authors who inspired this thesis: R. Hawkins, J. Lidsey, T. Christodoulakis, T. Grammenos, C. Helias, P. Kevrekidis, G. Papadopoulos and F.Williams. In particular we cast much of these authors’ works into a single framework via straightforward derivations of the EMP and NLS equations from a simple linear combination of the relevant Einstein equations. By rewriting the resulting expression in terms of the volume expansion factor and performing a change of variables, we obtain an uncoupled EMP or NLS equation that is independent of the imposition of additional conservation equations. Since the correspondences shown here present an alternative route for obtaining exact solutions to Einstein’s equations, we reconstruct many known exact solutions via their EMP or NLS counterparts and show by numerical analysis the stability properties of many solutions.
6

Strong Cosmic Censorship and Cosmic No-Hair in spacetimes with symmetries

Radermacher, Katharina Maria January 2017 (has links)
This thesis consists of three articles investigating the asymptotic behaviour of cosmological spacetimes with symmetries arising in Mathematical General Relativity. In Paper A and B, we consider spacetimes with Bianchi symmetry and where the matter model is that of a perfect fluid. We investigate the behaviour of such spacetimes close to the initial singularity ('Big Bang'). In Paper A, we prove that the Strong Cosmic Censorship conjecture holds in non-exceptional Bianchi class B spacetimes. Using expansion-normalised variables, we further show detailed asymptotic estimates. In Paper B, we prove similar estimates in the case of stiff fluids. In Paper C, we consider T2-symmetric spacetimes satisfying the Einstein equations for a non-linear scalar field. To given initial data, we show global existence and uniqueness of solutions to the corresponding differential equations for all future times. In the special case of a constant potential, a setting which is equivalent to a linear scalar field on a background with a positive cosmological constant, we investigate in detail the asymptotic behaviour towards the future. We prove that the Cosmic No-Hair conjecture holds for solutions satisfying an additional a priori estimate, an estimate which we show to hold in T3-Gowdy symmetry. / Denna avhandling består av tre artiklar som undersöker det asymptotiska beteendet hos kosmologiska rumstider med symmetrier som uppstår i Matematisk Allmän Relativitetsteori. I Artikel A och B studerar vi rumstider med Bianchi symmetri och där materiemodellen är en ideal fluid. Vi undersöker beteendet av sådana rumstider nära ursprungssingulariteten ('Big Bang'). I Artikel A bevisar vi att den Starka Kosmiska Censur-förmodan håller för icke-exceptionella Bianchi klass B-rumstider. Med hjälp av expansions-normaliserade variabler visar vi detaljerade asymptotiska uppskattningar. I Artikel B visar vi liknande uppskattningar för stela fluider. I Artikel C betraktar vi T2-symmetriska rumstider som uppfyller Einsteins ekvationer för ett icke-linjärt skalärfält. För givna begynnelsedata visar vi global existens och entydighet av lösningar till motsvarande differentialekvationer för all framtid. I det speciella fallet med en konstant potential, en situation som motsvarar ett linjärt skalärfält på en bakgrund med en positiv kosmologisk konstant, undersöker vi i detalj det asymptotiska beteendet mot framtiden. Vi visar att den Kosmiska Inget-Hår-förmodan håller för lösningar som uppfyller en ytterligare a priori uppskattning, en uppskattning som vi visar gäller i T3-Gowdy-symmetri. / <p>QC 20171220</p>
7

Les bulles de masse négative dans un espace de de Sitter.

Mbarek, Saoussen 12 1900 (has links)
Nous étudions différentes situations de distribution de la matière d’une bulle de masse négative. En effet, pour les bulles statiques et à symétrie sphérique, nous commençons par l’hypothèse qui dit que cette bulle, étant une solution des équations d’Einstein, est une déformation au niveau d’un champ scalaire. Nous montrons que cette idée est à rejeter et à remplacer par celle qui dit que la bulle est formée d’un fluide parfait. Nous réussissons à démontrer que ceci est la bonne distribution de matière dans une géométrie Schwarzschild-de Sitter, qu’elle satisfait toutes les conditions et que nous sommes capables de résoudre numériquement ses paramètres de pression et de densité. / We study different situations of matter distribution of a negative mass bubble. For the case of static and spherically symmetric bubbles, we start with the hypothesis saying that this kind of bubble, being a solution of Einstein equations, is a deformation of scalar field. We show that this idea must be rejected and replaced by another saying that the bubble is formed by a perfect fluid. We succeed to demonstrate that this is the proper matter distribution within Schwarzschild-De Sitter geometry, that it satisfies all conditions and that we’re capable of resolving numerically its parameters of pressure and density.
8

Les bulles de masse négative dans un espace de de Sitter

Mbarek, Saoussen 12 1900 (has links)
No description available.

Page generated in 0.0603 seconds