Spelling suggestions: "subject:"periódicas"" "subject:"aperiódicas""
31 |
Órbitas quirais, classes de conjugação e dinâmica holomórfica sem pontos críticosEndler, Antônio January 2006 (has links)
Nesta Tese discutimos três problemas chave que estabelecem um número de conexões entre aspectos fundamentais e aplicações práticas em Dinâmica Não-Linear. No primeiro capítulo revisamos conceitos básicos e como simplificar e resolver de modo exato as equações de movimento de um difeomorfismo polinomial que exibe um cenário rico em complexidade, da integrabilidade ao caos dissipativo: o mapa de Hénono Apresentamos resultados exatos definindo todas as órbitas periódicas de períodos até 6 no limite Hamiltoniano do modelo para uma de não-linearidade representativa onde existe uma ferradura completa de Smale, quando todas órbitas possíveis são reais. Mostramos que é possível classificar as órbitas segundo as irracionalidades algébricas envolvidas nas soluções exatas, re-ordenando e mostrando inter-dependências dos rótulos normalmente derivados através da dinâmica simbólica. Nossas soluções exatas permitem-nos resolver de uma vez por todas o enigma do centro de massa orbital, que consiste na observação empírica, apresentada na literatura, da simplificação freqüente da soma das coordenadas dos pontos orbitais em simples números racionais. No segundo capítulo mostramos que, ainda no limite Hamiltoniano mas para valores arbitrários do parâmetro de não-linearidade, o conjunto das órbitas periódicas é formado por três classes de conjugação algébrica bem definidas. Mostramos que a classe das órbitas assimétricas é composto por pares de órbitas que exibem simetria quiral. Apesar de ser comum na literatura estudar-se preferencialmente apenas as órbitas simétricas, mostramos que as órbitas assimétricas são as que dominam por completo a estatística orbital à medida que o período cresce. Por exemplo, para período 20, computamos que 97.2% das 52377 órbitas existentes, consideradas até aqui como meramente assimétricas são, na verdade, pares de órbitas com simetria quiral. A Tese é concluida no terceiro capítulo, onde apresentamos um estudo numérico para verificar alguns aspectos dinâmicos que, devido à extensão dos cálculos, não podem ser decididos analiticamente como nos dois capítulos precedentes. Mais especificamente, estudamos a conexão entre os espaços de fase real e complexo de mapa de Hénon dissipativos, quando se mantém os parâmetros de controle no domínio real. Tal cenário nos permite encontrar dois resultados novos: (i) a existência de uma infinidade de órbitas periódicas que, apesar de existirem no plano complexo, são estáveis para valores reais dos parâmetros de controle, e (ii) que os pontos críticos, atores centrais hoje em dia da dinâmica holomórfica (i. e. analítica complexa), na verdade são totalmente não-essenciais. Isto porque, como demonstramos, a mesma fenomenologia da dinâmica holomórfica pode ser obtida num regime realístico onde sequer é possível definir-se pontos críticos. Em particular, mostramos como obter conjuntos mais gerais que o famoso conjunto de Mandelbrot sem envolver considerações de pontos críticos. / In this Thesis we discuss three key prablems that establish a number of connections between fundamental aspects and practical applications in Nonlinear Dynamics. In the first chapter we review basic concepts and how to simplify and exactly solve the equations of motion of a polynomial di.ffeomorphism which exhibits a full range of complexity, fram integrability to dissipative chaos: the Hénon map. We report exact results defining all periodic orbits with periods up to 6 in the Hamiltonian limit of the model for a representative nonlinearity supporting a full Smale horseshoe, when all possible orbits are real. We show that it is possible to classify the orbits according the algebraic irrationality involved in the exact solutions) re-ordering and making visible interdependencies of the labels normally derived via symbolic dynamics. Our exact solution allow us to solve for good the puzzle of the orbital center-of-mass. In the second chapter we show that, still in the Hamiltonian limit but for arbitrary values of the nonlinearity parameter) the set of periodic orbits is composed by three well-defined algebraic con,jugacy classes. We show that the class of asymmetrical orbits is composed by pairs of orbits exhibiting a chiral symmetry. Although in the literature it is common to study mainly symmetrical orbits) we show that it is the asymmetric orbits that completely dominate the orbital statistics when the period graws. For instance, for period 20 we computed that 97.2% of the 52377 existing orbits, considered thus far as being merely asymmetric orbits, are in fact pairs of orbits with chiral symmetry. The Thesis concludes in the third chapter, where we present a numerical study to verify some dynamical aspects that) due to the extension of the calculations) cannot be decided analytically as in the two preceding chapters. More specifically) we study the connection between the real and the complex phase-spaces of the dissipative Hénon map when maintaining the control parameters in the real domain. This scenario allows v.S to find two new results which are extremely surprising: (i) The existence of an infinity of periodic orbits which, albeit living in the complex plane) are stable for real values of the contral parameters) and (ii) That the critical point) key players nowadays in holomorphic (i. e. analytic complex) dynamics, in fact are totally non-essential. This because, as we show, the same phenomenology of holomorphic dynamics may be obtained in a realistic regime where it is not even possible to define critical points. In particular, we show how to obtain sets more general than the famous Mandelbrat set without considering critical points.
|
32 |
Teoria de órbitas periódicas no espectro e condutância de grafos quânticosWickert, Ricardo Mariense January 2008 (has links)
A transformada de Fourier da densidade de estados de grafos quˆanticos unidimensionais apresenta picos d localizados precisamente nos valores da ac¸ ˜ao de trajet´orias Newtonianas e n˜ao-Newtonianas. Introduzindo fios extendendo-se ao infinito, investigamos o problema de espalhamento correspondente; atrav´es do espectro transformado, encontramos picos que indicam que a condutˆancia tamb´em apresenta uma assinatura destas ´orbitas. C´alculos indicam que resultados de trabalhos anteriores para grafos fechados podem ser extendidos para sistemas abertos. Em particular, uma f´ormula do trac¸o ´e apresentada para trˆes exemplos em particular. / The Fourier transform of the density of states of one-dimensional, closed quantum graph exhibits d-peaks located precisely at the actions of Newtonian and non-Newtonian orbits. By introducing leads extending to infinity, we investigate the corresponding scattering problem; through the Fourier-transformed spectra, peaks are found indicating that also the conductance displays a signature of such periodic orbits. Our calculations indicate that results from previous work on closed graphs can be extended to open systems. In particular, we indicate a trace formula for three different cases.
|
33 |
Quando a eugenia se distancia do saneamento: as idéias de Renato Kehl e Octávio Domingues no Boletim de Eugenia / When eugenics withdraws from sanitation: the ideas of Renato Kehl and Octávio Domingues in the Boletim de EugeniaSantos, Alessandra Rosa January 2005 (has links)
Made available in DSpace on 2013-01-07T15:55:06Z (GMT). No. of bitstreams: 2
license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5)
14.pdf: 1525828 bytes, checksum: abb8017e804a6d54155945beb86e461f (MD5)
Previous issue date: 2005 / Analisa as discussões publicadas no periódico intitulado Boletim de Eugenia (1929-1933) acerca dos propósitos eugênicos no Brasil. O primeiro número desta publicação circulou em janeiro de 1929 e seu editor, Renato Kehl, definiu que seu objetivo com a publicação do referido periódico era auxiliar a campanha em prol da Eugenia para os elementos que compunham a intelectualidade brasileira e demais cidadãos preocupados com o destino nacional.
|
34 |
Mulheres, mães e médicos: discurso maternalista em revistas femininas (Rio de Janeiro e São Paulo, década de 1920) / Women, mothers and physicians: maternalist discourse in feminine magazines (Rio de Janeiro and São Paulo, the 1920s')Freire, Maria Martha de Luna January 2006 (has links)
Made available in DSpace on 2013-01-07T15:59:31Z (GMT). No. of bitstreams: 2
license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5)
2.pdf: 6486291 bytes, checksum: cf41feab3b9d80d7cb74ab4d0cdb1fa7 (MD5)
Previous issue date: 2006 / Tem por objetivo investigar o processo de difusão da ideologia da maternidade científica em duas revistas femininas - Vida Doméstica e Revista Feminina - que circularam nas cidades de Rio de Janeiro e São Paulo na década de 1920. A identificação das revistas femininas com a dimensão de modernidade constituiu elemento essencial para a sua configuração como base cultural perfeita para a difusão do ideário da maternidade científica.
|
35 |
Presencia y función de la traducción en la revista cubana Orígenes: (1944-1956)Popea, Marina January 2016 (has links)
Tesis para optar al grado de Magíster en Estudios Latinoamericanos / En la presente investigación, se analizan las traducciones publicadas por la revista Orígenes
a lo largo de su existencia (entre los años 1944 y 1956), entendiéndolas en el marco de las
luchas propias del campo literario cubano y de las dinámicas del cambio cultural. Se
establece en un primer tiempo un inventario del material traducido, que es luego estudiado
en su conjunto. En base a lo anterior, se distinguen dos líneas principales en la política de
traducciones de Orígenes, correspondiendo a dos momentos del postvanguardismo
latinoamericano: el primero, fundacional, vinculado al origenismo lezamiano y vitieriano, se
sustenta en las tradiciones greco-latina, hispana y francesa (lo cual se evidencia en sus
traducciones, desde el francés, de poetas simbolistas y puristas, y de críticos católicos); el
segundo, antifundacional, propone una concepción más irreverente del hecho poético y
prefigura las corrientes conversacionales que florecen posteriormente a la Revolución. Esta
línea alternativa, impulsada por José Rodríguez Feo y Virgilio Piñera, no prospera en
Orígenes, pero alcanzaría más protagonismo en Ciclón, y sobre todo en los años 1960, e
incluye en sus traducciones sectores del surrealismo y del existencialismo, y sobre todo el
coloquialismo norteamericano. En un segundo tiempo, se examina la relación de las mujeres
traductoras, muy minoritarias en nuestro corpus, con dicha tensión entre ambas líneas,
planteando que su labor, articulada desde el margen del campo, introduce diversas
perspectivas alternativas al origenismo hegemónico. Vemos, de esta manera, cómo el estudio
de la traducción permite evidenciar las dinámicas que sustentan la evolución de los campos
culturales latinoamericanos.
|
36 |
Existência de soluções quase automórficas para equações diferenciais abstratasZanchetta, Janaina Pedroso [UNESP] 11 February 2015 (has links) (PDF)
Made available in DSpace on 2015-09-17T15:25:07Z (GMT). No. of bitstreams: 0
Previous issue date: 2015-02-11. Added 1 bitstream(s) on 2015-09-17T15:49:16Z : No. of bitstreams: 1
000844090.pdf: 656428 bytes, checksum: a55dadddc2ee6b8b588341c60e775788 (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Neste trabalho, estudaremos a existência e a unicidade de solução fraca quase automórfica para a equação diferencial abstrata semi-linear dada por x0(t) = Ax(t) + f(t; x(t)); t 2 R ; onde A é o gerador infinitesimal de um C0-semigrupo exponencialmente estável em um espaço de Banach / In this work, we study the existence and uniqueness of an almost automorphic mild solution to the semilinear abstract di erential equation given by x0(t) = Ax(t) + f(t; x(t)); t 2 R; where A is the in nitesimal generator of an exponentially stable C0-semigroup in a Banach space
|
37 |
Teoria de órbitas periódicas no espectro e condutância de grafos quânticosWickert, Ricardo Mariense January 2008 (has links)
A transformada de Fourier da densidade de estados de grafos quˆanticos unidimensionais apresenta picos d localizados precisamente nos valores da ac¸ ˜ao de trajet´orias Newtonianas e n˜ao-Newtonianas. Introduzindo fios extendendo-se ao infinito, investigamos o problema de espalhamento correspondente; atrav´es do espectro transformado, encontramos picos que indicam que a condutˆancia tamb´em apresenta uma assinatura destas ´orbitas. C´alculos indicam que resultados de trabalhos anteriores para grafos fechados podem ser extendidos para sistemas abertos. Em particular, uma f´ormula do trac¸o ´e apresentada para trˆes exemplos em particular. / The Fourier transform of the density of states of one-dimensional, closed quantum graph exhibits d-peaks located precisely at the actions of Newtonian and non-Newtonian orbits. By introducing leads extending to infinity, we investigate the corresponding scattering problem; through the Fourier-transformed spectra, peaks are found indicating that also the conductance displays a signature of such periodic orbits. Our calculations indicate that results from previous work on closed graphs can be extended to open systems. In particular, we indicate a trace formula for three different cases.
|
38 |
Órbitas quirais, classes de conjugação e dinâmica holomórfica sem pontos críticosEndler, Antônio January 2006 (has links)
Nesta Tese discutimos três problemas chave que estabelecem um número de conexões entre aspectos fundamentais e aplicações práticas em Dinâmica Não-Linear. No primeiro capítulo revisamos conceitos básicos e como simplificar e resolver de modo exato as equações de movimento de um difeomorfismo polinomial que exibe um cenário rico em complexidade, da integrabilidade ao caos dissipativo: o mapa de Hénono Apresentamos resultados exatos definindo todas as órbitas periódicas de períodos até 6 no limite Hamiltoniano do modelo para uma de não-linearidade representativa onde existe uma ferradura completa de Smale, quando todas órbitas possíveis são reais. Mostramos que é possível classificar as órbitas segundo as irracionalidades algébricas envolvidas nas soluções exatas, re-ordenando e mostrando inter-dependências dos rótulos normalmente derivados através da dinâmica simbólica. Nossas soluções exatas permitem-nos resolver de uma vez por todas o enigma do centro de massa orbital, que consiste na observação empírica, apresentada na literatura, da simplificação freqüente da soma das coordenadas dos pontos orbitais em simples números racionais. No segundo capítulo mostramos que, ainda no limite Hamiltoniano mas para valores arbitrários do parâmetro de não-linearidade, o conjunto das órbitas periódicas é formado por três classes de conjugação algébrica bem definidas. Mostramos que a classe das órbitas assimétricas é composto por pares de órbitas que exibem simetria quiral. Apesar de ser comum na literatura estudar-se preferencialmente apenas as órbitas simétricas, mostramos que as órbitas assimétricas são as que dominam por completo a estatística orbital à medida que o período cresce. Por exemplo, para período 20, computamos que 97.2% das 52377 órbitas existentes, consideradas até aqui como meramente assimétricas são, na verdade, pares de órbitas com simetria quiral. A Tese é concluida no terceiro capítulo, onde apresentamos um estudo numérico para verificar alguns aspectos dinâmicos que, devido à extensão dos cálculos, não podem ser decididos analiticamente como nos dois capítulos precedentes. Mais especificamente, estudamos a conexão entre os espaços de fase real e complexo de mapa de Hénon dissipativos, quando se mantém os parâmetros de controle no domínio real. Tal cenário nos permite encontrar dois resultados novos: (i) a existência de uma infinidade de órbitas periódicas que, apesar de existirem no plano complexo, são estáveis para valores reais dos parâmetros de controle, e (ii) que os pontos críticos, atores centrais hoje em dia da dinâmica holomórfica (i. e. analítica complexa), na verdade são totalmente não-essenciais. Isto porque, como demonstramos, a mesma fenomenologia da dinâmica holomórfica pode ser obtida num regime realístico onde sequer é possível definir-se pontos críticos. Em particular, mostramos como obter conjuntos mais gerais que o famoso conjunto de Mandelbrot sem envolver considerações de pontos críticos. / In this Thesis we discuss three key prablems that establish a number of connections between fundamental aspects and practical applications in Nonlinear Dynamics. In the first chapter we review basic concepts and how to simplify and exactly solve the equations of motion of a polynomial di.ffeomorphism which exhibits a full range of complexity, fram integrability to dissipative chaos: the Hénon map. We report exact results defining all periodic orbits with periods up to 6 in the Hamiltonian limit of the model for a representative nonlinearity supporting a full Smale horseshoe, when all possible orbits are real. We show that it is possible to classify the orbits according the algebraic irrationality involved in the exact solutions) re-ordering and making visible interdependencies of the labels normally derived via symbolic dynamics. Our exact solution allow us to solve for good the puzzle of the orbital center-of-mass. In the second chapter we show that, still in the Hamiltonian limit but for arbitrary values of the nonlinearity parameter) the set of periodic orbits is composed by three well-defined algebraic con,jugacy classes. We show that the class of asymmetrical orbits is composed by pairs of orbits exhibiting a chiral symmetry. Although in the literature it is common to study mainly symmetrical orbits) we show that it is the asymmetric orbits that completely dominate the orbital statistics when the period graws. For instance, for period 20 we computed that 97.2% of the 52377 existing orbits, considered thus far as being merely asymmetric orbits, are in fact pairs of orbits with chiral symmetry. The Thesis concludes in the third chapter, where we present a numerical study to verify some dynamical aspects that) due to the extension of the calculations) cannot be decided analytically as in the two preceding chapters. More specifically) we study the connection between the real and the complex phase-spaces of the dissipative Hénon map when maintaining the control parameters in the real domain. This scenario allows v.S to find two new results which are extremely surprising: (i) The existence of an infinity of periodic orbits which, albeit living in the complex plane) are stable for real values of the contral parameters) and (ii) That the critical point) key players nowadays in holomorphic (i. e. analytic complex) dynamics, in fact are totally non-essential. This because, as we show, the same phenomenology of holomorphic dynamics may be obtained in a realistic regime where it is not even possible to define critical points. In particular, we show how to obtain sets more general than the famous Mandelbrat set without considering critical points.
|
39 |
Órbitas quirais, classes de conjugação e dinâmica holomórfica sem pontos críticosEndler, Antônio January 2006 (has links)
Nesta Tese discutimos três problemas chave que estabelecem um número de conexões entre aspectos fundamentais e aplicações práticas em Dinâmica Não-Linear. No primeiro capítulo revisamos conceitos básicos e como simplificar e resolver de modo exato as equações de movimento de um difeomorfismo polinomial que exibe um cenário rico em complexidade, da integrabilidade ao caos dissipativo: o mapa de Hénono Apresentamos resultados exatos definindo todas as órbitas periódicas de períodos até 6 no limite Hamiltoniano do modelo para uma de não-linearidade representativa onde existe uma ferradura completa de Smale, quando todas órbitas possíveis são reais. Mostramos que é possível classificar as órbitas segundo as irracionalidades algébricas envolvidas nas soluções exatas, re-ordenando e mostrando inter-dependências dos rótulos normalmente derivados através da dinâmica simbólica. Nossas soluções exatas permitem-nos resolver de uma vez por todas o enigma do centro de massa orbital, que consiste na observação empírica, apresentada na literatura, da simplificação freqüente da soma das coordenadas dos pontos orbitais em simples números racionais. No segundo capítulo mostramos que, ainda no limite Hamiltoniano mas para valores arbitrários do parâmetro de não-linearidade, o conjunto das órbitas periódicas é formado por três classes de conjugação algébrica bem definidas. Mostramos que a classe das órbitas assimétricas é composto por pares de órbitas que exibem simetria quiral. Apesar de ser comum na literatura estudar-se preferencialmente apenas as órbitas simétricas, mostramos que as órbitas assimétricas são as que dominam por completo a estatística orbital à medida que o período cresce. Por exemplo, para período 20, computamos que 97.2% das 52377 órbitas existentes, consideradas até aqui como meramente assimétricas são, na verdade, pares de órbitas com simetria quiral. A Tese é concluida no terceiro capítulo, onde apresentamos um estudo numérico para verificar alguns aspectos dinâmicos que, devido à extensão dos cálculos, não podem ser decididos analiticamente como nos dois capítulos precedentes. Mais especificamente, estudamos a conexão entre os espaços de fase real e complexo de mapa de Hénon dissipativos, quando se mantém os parâmetros de controle no domínio real. Tal cenário nos permite encontrar dois resultados novos: (i) a existência de uma infinidade de órbitas periódicas que, apesar de existirem no plano complexo, são estáveis para valores reais dos parâmetros de controle, e (ii) que os pontos críticos, atores centrais hoje em dia da dinâmica holomórfica (i. e. analítica complexa), na verdade são totalmente não-essenciais. Isto porque, como demonstramos, a mesma fenomenologia da dinâmica holomórfica pode ser obtida num regime realístico onde sequer é possível definir-se pontos críticos. Em particular, mostramos como obter conjuntos mais gerais que o famoso conjunto de Mandelbrot sem envolver considerações de pontos críticos. / In this Thesis we discuss three key prablems that establish a number of connections between fundamental aspects and practical applications in Nonlinear Dynamics. In the first chapter we review basic concepts and how to simplify and exactly solve the equations of motion of a polynomial di.ffeomorphism which exhibits a full range of complexity, fram integrability to dissipative chaos: the Hénon map. We report exact results defining all periodic orbits with periods up to 6 in the Hamiltonian limit of the model for a representative nonlinearity supporting a full Smale horseshoe, when all possible orbits are real. We show that it is possible to classify the orbits according the algebraic irrationality involved in the exact solutions) re-ordering and making visible interdependencies of the labels normally derived via symbolic dynamics. Our exact solution allow us to solve for good the puzzle of the orbital center-of-mass. In the second chapter we show that, still in the Hamiltonian limit but for arbitrary values of the nonlinearity parameter) the set of periodic orbits is composed by three well-defined algebraic con,jugacy classes. We show that the class of asymmetrical orbits is composed by pairs of orbits exhibiting a chiral symmetry. Although in the literature it is common to study mainly symmetrical orbits) we show that it is the asymmetric orbits that completely dominate the orbital statistics when the period graws. For instance, for period 20 we computed that 97.2% of the 52377 existing orbits, considered thus far as being merely asymmetric orbits, are in fact pairs of orbits with chiral symmetry. The Thesis concludes in the third chapter, where we present a numerical study to verify some dynamical aspects that) due to the extension of the calculations) cannot be decided analytically as in the two preceding chapters. More specifically) we study the connection between the real and the complex phase-spaces of the dissipative Hénon map when maintaining the control parameters in the real domain. This scenario allows v.S to find two new results which are extremely surprising: (i) The existence of an infinity of periodic orbits which, albeit living in the complex plane) are stable for real values of the contral parameters) and (ii) That the critical point) key players nowadays in holomorphic (i. e. analytic complex) dynamics, in fact are totally non-essential. This because, as we show, the same phenomenology of holomorphic dynamics may be obtained in a realistic regime where it is not even possible to define critical points. In particular, we show how to obtain sets more general than the famous Mandelbrat set without considering critical points.
|
40 |
Teoria de órbitas periódicas no espectro e condutância de grafos quânticosWickert, Ricardo Mariense January 2008 (has links)
A transformada de Fourier da densidade de estados de grafos quˆanticos unidimensionais apresenta picos d localizados precisamente nos valores da ac¸ ˜ao de trajet´orias Newtonianas e n˜ao-Newtonianas. Introduzindo fios extendendo-se ao infinito, investigamos o problema de espalhamento correspondente; atrav´es do espectro transformado, encontramos picos que indicam que a condutˆancia tamb´em apresenta uma assinatura destas ´orbitas. C´alculos indicam que resultados de trabalhos anteriores para grafos fechados podem ser extendidos para sistemas abertos. Em particular, uma f´ormula do trac¸o ´e apresentada para trˆes exemplos em particular. / The Fourier transform of the density of states of one-dimensional, closed quantum graph exhibits d-peaks located precisely at the actions of Newtonian and non-Newtonian orbits. By introducing leads extending to infinity, we investigate the corresponding scattering problem; through the Fourier-transformed spectra, peaks are found indicating that also the conductance displays a signature of such periodic orbits. Our calculations indicate that results from previous work on closed graphs can be extended to open systems. In particular, we indicate a trace formula for three different cases.
|
Page generated in 0.0343 seconds