Spelling suggestions: "subject:"phase btransfer catalysis"" "subject:"phase btransfer atalysis""
1 |
Kinetics of the deprotonation and N-alkylation of acetanilide via phase-transfer catalysisWright, James T., Jr. 12 1900 (has links)
No description available.
|
2 |
Phase-transfer catalysis in supercritical fluid solventsWheeler, Theresa Christy 05 1900 (has links)
No description available.
|
3 |
Mechanistic aspects of phase transfer catalysisRay, Charles Wesley 12 1900 (has links)
No description available.
|
4 |
Kinetics of the solid-liquid phase-transfer catalyzed deprotonation and N-alkylation of acetanilideWyatt, Victor T. 08 1900 (has links)
No description available.
|
5 |
An investigation of omega-phase catalysisFair, Barbara E. 05 1900 (has links)
No description available.
|
6 |
Investigation of phase transfer catalyzed depolymerization of nylon 46Shah, Munish January 1995 (has links)
No description available.
|
7 |
Devulcanization of automobile tires via phase transfer catalysisMilani, Michael 12 1900 (has links)
No description available.
|
8 |
An investigation into air stable analogues of Wilkinson's catalyst.Naicker, Serina. 22 May 2014 (has links)
Since the discovery of Wilkinson’s catalyst and its usefulness in the homogeneous hydrogenation of olefins many investigations have been carried out on trivalent, tertiary phosphine–rhodium complexes.¹ Studies have shown that N-Heterocyclic carbenes as ligands offer increased stability to the complex and possess similar electronic properties as phosphine ligands.² The applications of the traditional catalyst are limited due to the limited stability of its solutions and its susceptibility to attack from the environment i.e. oxygen and moisture. The hydrogenation of olefins and other unsaturated compound is of great importance for the fine chemical and petroleum industries. The aim is to produce more stable and active versions of the traditional catalyst and also to demonstrate their improved stability and activity in catalytic applications. This study involves the investigation of the effects of ligand modification on Wilkinson type hydrogenation catalysts. Five Rhodium-phosphine complexes 1a: Rh(PPh₃)₃Cl, 1b: Rh(PPh₂Me)₃Cl, 1c: Rh(PPh₂Et)₃Cl, 1d: Rh(PPhMe₂)₃Cl, 1e: Rh(PPhMe₂)₃Cl have been synthesised and characterised by means of melting point,¹H NMR, ¹³C NMR, ³¹P NMR, IR and Mass Spectroscopy. Complexes 1d and 1e have also been characterised by means of elemental analysis and single crystal XRD. Five rhodium-N-heterocyclic carbene complexes 2a: Rh(COD)ImesCl [Imes =1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene] , 2b: Rh(COD)(diisopropylphenyl)₂Cl 2c: Rh(COD)(adamantyl)²Cl, 2d: Rh(COD)(diisopropyl)²Cl 2e: Rh(COD)(ditertbutyl)²Cl have been synthesised and characterised by means of melting point, ¹H NMR, ¹³C NMR, IR and Mass Spectroscopy. Five rhodium-NHC-CO complexes 3a: Rh(CO)₂ImesCl, 3b: Rh(CO)₂(diisopropylphenyl)₂Cl, 3c: Rh(CO)₂(adamantyl)₂Cl , 3d: Rh(CO)₂(diisopropyl)₂Cl, 3e: Rh(CO)₂(ditertbutyl)₂Cl, have been synthesised and characterised by means of ¹H NMR, ¹³C NMR, IR and Mass Spectroscopy.
Complexes 1a, 1d, 1e, 2a, 2b, 2c, 2d, 2e were tested in the hydrogenation of simple alkenes under mild conditions. For the rhodium-phosphine complexes the catalyst efficiency based on TOF increases in the following order: 1a > 1d > 1e or RhCl₃(PPhMe₂)₃ > RhCl₃(PPhEt₂)₃ > RhCl(PPh₃)₃. For the rhodium-(COD)-NHC complexes catalyst efficiency based on TOF increases in the following order: 2d > 2b > 2e > 2a > 2c. While rhodium-phosphine complexes are far more active than rhodium-(COD)-NHC complexes, the latter seem to be active for a longer time and hence more stable under mild hydrogenation conditions. / Thesis (M.Sc.)-University of KwaZulu-Natal, Durban, 2010.
|
9 |
Palladium-imidazolium carbene catalyzed Heck coupling reactions and synthesis of a novel class of fluoroanthracenylmethyl PTC catalysts /Zhang, Jiuqing, January 2005 (has links) (PDF)
Thesis (M.S.)--Brigham Young University. Dept. of Chemistry and Biochemistry, 2005. / Includes bibliographical references.
|
10 |
Asymmetric synthesis of heterocycles via cation-directed cyclizations and rearrangementsLamb, Alan David January 2014 (has links)
The aim of this project was to utilize chiral cation-directed catalysis in the asymmetric synthesis of novel hererocycles. This goal was initially realized by the synthesis of azaindolines in high yields and enantioselectivities (Chapter 2). Extension of this methodology to substrates bearing two stereogenic centres was successful, although control over both diastereoselectivity and enantioselectivity in this process was modest. Finally the synthesis of heterocycles utilizing cation-directed rearrangement processes was examined, with proof of concept obtained for a novel asymmetric cyclization to form xanthenes.
|
Page generated in 0.0466 seconds