• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 172
  • 18
  • 16
  • 10
  • 9
  • 6
  • 4
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 278
  • 278
  • 48
  • 48
  • 40
  • 37
  • 33
  • 30
  • 28
  • 27
  • 27
  • 27
  • 25
  • 23
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
231

Purification of UV cross-linked RNA-protein complexes by phenol-toluol extraction

Urdaneta Zurbarán, Erika Cristina 24 April 2020 (has links)
RNA-Bindungsproteine spielen Schlüsselfunktionen bei der post-transkriptionellen Regulation der Genexpression. Durch Bindung an RNA steuern sie die RNA-Aufbereitung, den Transport, die Stabilität und die Translation. In den letzten zehn Jahren wurden bedeutende Fortschritte bei der Aufklärung bakterieller post-transkriptioneller Mechanismen erzielt. Es wird immer deutlicher, dass diese Regulierungsebene auch bei der Pathogenese und Antibiotikaresistenz eine wichtige Rolle spielt. Die Analyse von RNA-Protein-Komplexen (RNPs) auf Proteomebene wurde durch die (m)RNA-interactome-capture Technologie vorangetrieben, die den Teil des Proteoms isoliert, welcher mit polyadenylierter (m)RNA vernetzt ist. Dies hat zur Identifizierung von Hunderten von neuen RBPs in einer Vielzahl von eukaryontischen Arten, vom Menschen bis zur Hefe, geführt. Allerdings fehlt die Poly-Adenylierung in der funktionellen RNA von Bakterien und anderen Klassen von -eukaryontischen- regulatorischen RNAs. Ziel dieser Arbeit war es, diese Einschränkung durch die Entwicklung einer neuartigen und unvoreingenommenen Methode zur Aufreinigung von UV-vernetzten RNPs in lebenden Zellen zu überwinden: PTex (Phenol-Toluol-Extraktion). Das Reinigungsprinzip basiert ausschließlich auf den physikalisch-chemischen Eigenschaften von vernetzten RNPs gegenüber ungebundenen Proteinen oder RNA; es ist dabei unparteiisch gegenüber spezifischen RNAs oder Proteinen und ermöglicht somit erstmals eine systemweite Analyse von nicht-poly-(A)-RNA-interagierenden Proteinen sowohl in eukaryontischen (HEK293) als auch in prokaryontischen (Salmonella Typhimurium) Zellen. / RNA binding proteins play key functions in post-transcriptional regulation of gene expression. By binding to RNA, they control RNA editing, transport, stability and translation. In the last decade, significant advances have been made in the elucidation of bacterial post-transcriptional mechanisms. It is becoming increasingly clear that this layer of regulation also plays an important role in pathogenesis and antibiotic resistance. The analysis of RNA-protein complexes (RNPs) at the proteome level has been driven by the (m)RNA interactome capture technology which isolates the proteome cross-linked to poly-adenylated (m)RNA. This has resulted in the identification of hundreds of novel RBPs in a diversity of eukaryotic species ranging from humans to yeast. However, poly-adenylation is absent in functional RNA from bacteria and other classes of -eukaryotic- regulatory RNAs. This work was aimed to overcome that limitation by developing a novel and unbiased method for the purification of UV-cross-linked RNPs in living cells: PTex (Phenol Toluol extraction). The purification principle is solely based on physicochemical properties of cross-linked RNPs versus unbound proteins or RNA, and it is impartial towards specific RNA or proteins; enabling for the first time a system-wide analysis of non-poly(A) RNA interacting proteins in both eukaryotic (HEK293) and prokaryotic (Salmonella Typhimurium) cells.
232

Influence d'une contrainte mécanique sur le vieillissement d'alliages Fe-Cr / Influence of a mechanical load on the ageing of Fe-Cr alloys

Dahlström, Alexander 19 September 2019 (has links)
L’acier inoxydable est un alliage important pour le développement technique d’une société moderne; cela a été découvert au début du 20ème siècle. Cependant, leur système d'alliage de base, Fe-Cr, est affecté par une lacune de miscibilité à basse température (<600 °C) présent dans le diagramme de phases. Les alliages présentant une lacune de miscibilité dans leur diagramme de phase ont tendance à se décomposer. Ce phénomène également connu sous le nom de "fragilisation à 475 °C", est d’une importance technique, car la décomposition modifie les propriétés mécaniques de ces alliages; dans ce cas présente, par la perte de ductilité et de résistance aux chocs. La tendance à la décomposition augmente avec la diminution de la température, ce qui limite la température de service supérieure à environ 300 °C, limitant ainsi la durée de vie de ces alliages. Étant donné que la fragilisation peut provoquer une défaillance soudaine de ces alliages, cet aspect nuit à leur utilisation en tant que composants structurels dans les secteurs du transport et de l’énergie. La décomposition des alliages Fe-Cr pose un défi aux techniques de caractérisation traditionnelles, car les variations de composition se produisent à l'échelle nanométrique. Par conséquent, la sonde atomique tomographique de pointe a été utilisée pour étudier ces variations de composition à l'échelle atomique en 3D. La modélisation atomistique corrélative a été utilisée pour améliorer davantage la compréhension du processus de décomposition dans ces alliages ; ce modèle était basé sur la théorie de la fonction de densité atomique. Pour émuler la décomposition améliorée du matériau, causée par la température et/ou une charge externe, la décomposition dans ce projet est stimulée par une température de service supérieure à la normale. Dont la nécessité de connaître la limite exacte de la lacune de miscibilité. Ainsi, la nécessité d'évaluer la limite supérieure de température de cette décomposition dans le système Fe-Cr est née de résultats non concluants des analyses de la littérature existant. Par conséquent, un four de haute précision en combinaison avec une sonde atomique tomographique a été utilisé pour étudier la décomposition et l’agglomération dans le système Fe-Cr d’une manière plus précise que jamais. En outre, d’explorer en détail l’emplacement de la limite de la lacune de miscibilité. La décomposition de ces alliages au cours du vieillissement modifie les propriétés mécaniques. Ainsi, en raison de leur utilisation en tant que composants structurels, le comportement de décomposition dû au vieillissement a été étudié, ainsi que le vieillissement dû à la charge externe. Cette dernière situation se rencontre également dans des applications réelles pendant le service, émulées par le vieillissement dû à la pression en utilisant une simple force de traction. Afin d'examiner en détail l'effet de la pression externe, l'orientation du grain par rapport à la direction de traction a été prise en compte lors d'un simple vieillissement thermique et lors de l’application d’une force de traction continue. Ainsi, l'orientation cristallographique et les niveaux de charge ont été pris en compte pour leur effet sur le processus de décomposition/dégradation. / Stainless steel is an important alloy for the technical development of a modern society, they were discovered in the early 20th century. However, their base alloying system, Fe-Cr, is affected by a low temperature (<600°C) miscibility gap present in the phase diagram. Alloys with a miscibility gap in their phase diagram tend to decompose. This phenomenon is also known as the “475°C embrittlement”, it is of technical importance as decomposition alters the mechanical properties of these alloys, in this specific case, by loss of ductility and impact toughness. The tendency to decompose increases with decreasing temperature, restricting the upper service temperature to around 300°C and limiting the service lifetime of these alloys. Because embrittlement can cause sudden failure of these alloys, this phenomenon is detrimental to their use as structural components in transportation and energy industry. The decomposition of Fe-Cr alloys poses a challenge for traditional characterisation techniques, as composition variations occur at the nanoscale. Therefore, the state-of-the-art atom probe tomography have been utilised to study these composition variations at the atomic scale in 3D. Correlative atomistic modelling has been used to further enhance the understanding of the decomposition process in these alloys, this model was based on atomic density function theory. To emulate enhanced decomposition of the material, caused by temperature and/or an external load, decomposition in this work is stimulated by a higher than the normal service temperature. Hence, a need to know the exact limit of the miscibility gap. Thus, a need to evaluate the upper-temperature limit of this decomposition in the Fe-Cr system arose from inconclusive results in the literature. Hence, a high precision furnace in combination with atom probe was utilised to study decomposition and clustering in the Fe-Cr system more accurately than ever before. Furthermore, to explore in detail the location of the limit of the miscibility gap. The decomposition of these alloys during ageing alter the mechanical properties. Thus, due to their use as structural components, the decomposition behaviour during ageing was investigated, as well as ageing during external load. This last situation is also encountered in real applications during service, mimicked by stress-ageing using a simple tensile force. In order to in detail investigate the effect of the external stress, grain orientation with respect to the tensile direction was considered during simple thermal ageing, and during the constantly applied tensile force. Thus, crystallographic orientation and load levels were considered for their effect on the decomposition process.
233

DISSOLUTION AND MEMBRANE MASS TRANSPORT OF SUPERSATURATING DRUG DELIVERY SYSTEMS

Siddhi-Santosh Hate (8715135) 17 April 2020 (has links)
<p>Supersaturating drug delivery systems are an attractive solubility enabling formulation strategy for poorly soluble drugs due to their potential to significantly enhance solubility and hence, bioavailability. Compendial dissolution testing is commonly used a surrogate for assessing the bioavailability of enabling formulations. However, it increasingly fails to accurately predict <i>in vivo</i> performance due its closed-compartment characteristics and the lack of absorptive sink conditions. <i>In vivo</i>, drug is continually removed due to absorption across the gastrointestinal membrane, which impacts the luminal concentration profile, which in turn affects the dissolution kinetics of any undissolved material, as well as crystallization kinetics from supersaturated solutions. Thus, it is critical to develop an improved methodology that better mimics <i>in vivo</i> conditions. An enhanced approach integrates dissolution and absorption measurements. However, currently-used two-compartment absorptive apparatuses, employing a flat-sheet membrane are limited, in particular by the small membrane surface area that restricts the mass transfer, resulting in unrealistic experimental timeframes. This greatly impacts the suitability of such systems as a formulation development tool. The goal of this research is two-fold. First, to develop and test a high surface area, flow-through, absorptive dissolution testing apparatus, designed to provide <i>in vivo</i> relevant information about formulation performance in biologically relevant time frames. Second, to use this apparatus to obtain mechanistic insight into physical phenomenon occurring during formulation dissolution. Herein, the design and construction of a coupled dissolution-absorption apparatus using a hollow fiber membrane module to simulate the absorption process is described. The hollow fiber membrane offers a large membrane surface area, improving the mass transfer rates significantly. Following the development of a robust apparatus, its application as a formulation development tool was evaluated in subsequent studies. The dissolution-absorption studies were carried out for supersaturated solutions generated via anti-solvent addition, pH-shift and by dissolution of amorphous formulations. The research demonstrates the potential of the apparatus to capture subtle differences between formulations, providing insight into the role of physical processes such as supersaturation, crystallization kinetics and liquid-liquid phase separation on the absorption kinetics. The study also explores dissolution-absorption performance of amorphous solid dispersions (ASDs) and the influence of resultant solution phase behavior on the absorption profile. Residual crystalline content in ASDs is a great concern from a physical stability and dissolution performance perspective as it can promote secondary nucleation or seed crystal growth. Therefore, the risk of drug crystallization during dissolution of ASDs containing some residual crystals was assessed using absorptive dissolution measurements and compared to outcomes observed using closed-compartment dissolution testing. Mesoporous silica-based formulations are another type of amorphous formulations that are gaining increased interest due to higher physical stability and rapid release of the amorphous drug. However, their application may be limited by incomplete drug release resulting from the adsorption tendency of the drug onto the silica surface. Thus, the performance of mesoporous silica-based formulations was also evaluated in the absorptive dissolution testing apparatus to determine the impact of physiological conditions such as gastrointestinal pH and simultaneous membrane absorption on the adsorption kinetics during formulation dissolution. Overall, the aim of this research was to demonstrate the potential of the novel <i>in vitro</i> methodology and highlight the significance of a dynamic absorptive dissolution environment to enable better assessment of complex enabling formulations. <i>In vivo</i>, there are multiple physical processes occurring in the gastrointestinal lumen and the kinetics of these processes strongly depend on the absorption kinetics and <i>vice-a-versa</i>. Thus, using this novel tool, the interplay between solution phase behavior and the likely impacts on bioavailability of supersaturating drug delivery systems can be better elucidated. This approach and apparatus is anticipated to be of great utility to the pharmaceutical industry to make informed decisions with respect to formulation optimization.</p>
234

Výzkum vlivu vnějších podnětů na chování teplotně-citlivých polymerů pomocí spektroskopických metod / Investigation of external stimuli-influenced temperature-sensitive polymers behavior studied by spectroscopic methods

Velychkivska, Nadiia January 2020 (has links)
Temperature-sensitive polymers or "smart" polymers are materials that undergo phase separation initiated by temperature change. Some of these polymers possess phase separation temperatures close to human body temperature (37 C), thus offering a wide range of potential applications in controlled drug release or gene delivery systems, bioseparations, tissue engineering, etc. Of the polymers with a phase separation temperature close to 37 C, poly(N- isopropylacrylamide) (PNIPAM) and poly(vinyl methyl ether) (PVME) are perhaps the most important and were selected as the subjects of this study. In this work, these two polymers have been examined in the presence of low molecular weight additives, and their colloidal stability evaluated using 1 H NMR (nuclear magnetic resonance) and time-resolved 1 H NMR spin-spin relaxation time T2 experiments. An improved model of the two exchangeable states was applied for a more detailed characterization of the phase separation process. The main focus of this study was to determine the influence of additives on the phase separation behavior of the polymers (phase separation temperature, width of transition, maximum number of polymer chains participating in phase separation), reversibility of the phase separation, dynamics of solvent molecules (water and additive),...
235

Synthesis of silicon nanocrystal memories by sputter deposition

Schmidt, Jan Uwe 15 October 2004 (has links)
In Silizium-Nanokristall-Speichern werden im Gate-Oxid eines Feldeffekttransistors eingebettete Silizium Nanokristalle genutzt, um Elektronen lokal zu speichern. Die gespeicherte Ladung bestimmt dann den Zustand der Speicherzelle. Ein wichtiger Aspekt in der Technologie dieser Speicher ist die Erzeugung der Nanokristalle mit einerwohldefinierten Größenverteilung und einem bestimmten Konzentrationsprofil im Gate-Oxid. In der vorliegenden Arbeit wurde dazu ein sehr flexibler Ansatz untersucht: die thermische Ausheilung von SiO2/SiOx (x &amp;lt; 2) Stapelschichten. Es wurde ein Sputterverfahren entwickelt, das die Abscheidung von SiO2 und SiOx Schichten beliebiger Zusammensetzung erlaubt. Die Bildung der Nanokristalle wurde in Abhängigkeit vom Ausheilregime und der SiOx Zusammensetzung charakterisiert, wobei unter anderem Methoden wie Photolumineszenz, Infrarot-Absorption, spektroskopische Ellipsometrie und Elektronenmikroskopie eingesetzt wurden. Anhand von MOS-Kondensatoren wurden die elektrischen Eigenschaften derart hergestellter Speicherzellen untersucht. Die Funktionalität der durch Sputterverfahren hergestellten Nanokristall-Speicher wurde erfolgreich nachgewiesen. / In silicon nanocrystal memories, electronic charge is discretely stored in isolated silicon nanocrystals embedded in the gate oxide of a field effect transistor. The stored charge determines the state of the memory cell. One important aspect in the technology of silicon nanocrystal memories is the formation of nanocrystals near the SiO2-Si interface, since both, the size distribution and the depth profile of the area density of nanocrystals must be controlled. This work has focussed on the formation of gate oxide stacks with embedded nanocrystals using a very flexible approach: the thermal annealing of SiO2/SiOx (x &amp;lt; 2) stacks. A sputter deposition method allowing to deposit SiO2 and SiOx films of arbitrary composition has been developed and optimized. The formation of Si NC during thermal annealing of SiOX has been investigated experimentally as a function of SiOx composition and annealing regime using techniques such as photoluminescence, infrared absorption, spectral ellipsometry, and electron microscopy. To proof the concept, silicon nanocrystal memory capacitors have been prepared and characterized. The functionality of silicon nanocrystal memory devices based on sputtered gate oxide stacks has been successfully demonstrated.
236

Rôle du système ubiquitine protéasome dans les séparations de phase nucléaires

Sen Nkwe Dibondo, Nadine 04 1900 (has links)
Le système ubiquitine-protéasome représente une plateforme de signalisation cellulaire chez les eucaryotes et joue un rôle majeur dans la coordination des processus cellulaires. Des progrès récents suggèrent que l’ubiquitination joue un rôle important dans les phénomènes de séparation de phase liquide-liquide (LLPS), un processus permettant la localisation d’une quantité accrue de protéines dans un compartiment subcellulaire, afin de réaliser une fonction biologique. En effet, il a été démontré que l’ubiquitination joue un rôle central dans les mécanismes qui gouvernent la LLPS durant la formation des granules de stress dans le cytoplasme ou les foci de réparation de l’ADN dans le noyau. D’autre part, chez la levure, des travaux ont montré que le protéasome est capable de s’assembler sous forme de granules dans le cytoplasme suite à un stress métabolique. Toutefois, les mécanismes par lesquels le système ubiquitine-protéasome ainsi que ses régulateurs contrôlent les processus de LLPS restent à déterminer. Dans la première étude de cette thèse, nous avons investigué le mécanisme d’action de la déubiquitinase USP16, qui a été suggérée comme un régulateur négatif de la LLPS, empêchant la formation des foci de réparations de dommages à l’ADN. Cependant, nos résultats démontrent que USP16 est majoritairement cytoplasmique et que seulement une entrée forcée de USP16 dans le noyau empêche la formation des foci de réparation des cassures double brin induites par des radiations ionisagntes et ce en favorisant la déubiquitination de l’histone H2A. De plus, aucune translocation nucléaire de USP16 n’a été observée durant le cycle cellulaire ou suite à des dommages à l’ADN. Nos travaux montrent que USP16 est activement exclue du noyau via son signal d’export nucléaire et régulerait indirectement la LLPS menant à la formation des foci de réparation de l’ADN. Dans la deuxième étude, nous décrivons le comportement dynamique des protéines du protéasome lors d’une LLPS induite par un stress métabolique. Nos résultats indiquent que le protéasome forme des foci distincts dans le noyau des cellules humaines en réponse à une privation de nutriments. Nous avons constaté que ces foci sont enrichis en ubiquitine conjuguée et nous avons démontré que le récepteur d’ubiquitine Rad23B ainsi que l’absence des acides aminés non essentiels sont des éléments clés nécessaires à l’assemblage de ces foci du iv protéasome. De plus, des expériences de survie cellulaire montrent que la présence de ces foci est associée à la mort des cellules par apoptose. En conclusion, nos travaux mettent en lumière l’importance du système ubiquitine-protéasome dans la formation et la régulation des foci cellulaires suite à une LLPS. De même, cette étude aidera également à approfondir notre compréhension sur les mécanismes qui gouvernent l’homéostasie des protéines, la survie cellulaire et le développement du cancer. / The ubiquitin-proteasome system represents a major cell-signaling platform in eukaryotes and plays a pivotal role in the coordination of cellular processes. Recent studies provided evidence that ubiquitination plays a role in liquid-liquid phase separation (LLPS), a process that results in the localization of highly increased levels of a protein in a defined subcellular compartment, in order to achieve a biological function. Indeed, ubiquitination has been shown to play a central role in the mechanisms that govern LLPS and subsequent formation of stress granules in the cytoplasm or the DNA repair foci in the nucleus. On the other hand, several studies have shown that the proteasome itself is able to form granules in the cytoplasm following metabolic stress in yeasts. However, the mechanisms by which the ubiquitin-proteasome system and its regulators control LLPS processes remain to be determined. In the first study of this thesis, we investigated the mechanism of action of USP16 deubiquitinase, which has been suggested as a negative regulator of LLPS preventing the formation of DNA damage repair foci. However, our results demonstrate that USP16 is predominantly cytoplasmic and that only enforced nuclear entry of USP16 prevents the formation of repair foci after double strand breaks induced by ionizing radiation, and this by promoting the deubiquitination of histone H2A. In addition, no nuclear translocation of USP16 was observed during cell cycle or following DNA damage. Our study shows that USP16 is actively excluded from the nucleus via its nuclear export signal and would indirectly regulate LLPS that lead to DNA repair foci. In the second study, we describe the dynamic behavior of proteasome proteins during metabolic stress, a process that involves LLPS. Our results indicate that the proteasome forms distinct foci in the nucleus of human cells in response to nutrients deprivation. We found that these foci are enriched with conjugated ubiquitin and demonstrated that the ubiquitin receptor Rad23B as well as the absence of nonessential amino acids are the key elements necessary for the assembly of these proteasome foci. In addition, cell survival experiments show that the presence of these foci is associated with cell death by apoptosis. In conclusion, our work has shed new light on the importance of the ubiquitin-proteasome system in the formation and regulation of cell foci following LLPS. Likewise, this vi study will also help deepen our understanding of the mechanisms leading to protein homeostasis, cell survival and cancer development.
237

Percolated Si:SiO2 Nanocomposite: Oven- vs. Laser-Induced Crystallization of SiOx Thin Films

Schumann, Erik 24 May 2022 (has links)
Silizium basierende Technologie bestimmt den technologischen Fortschritt in der Welt und ist weiterhin ein Material für die weitere Entwicklung von Schlüsseltechnologien. Die Änderung der Silizium-Materialeigenschaft der optischen und elektronische Bandlücke durch die Reduktion der Materialdimension auf die Nanometerskala ist dabei von besonders großem Interesse. Die meisten Silizium-Nanomaterialien bestehen aus Punkt-, Kugel- oder Drahtformen. Ein relativ neues Materialsystem sind dreidimensionale, durchdringende, Nano-Komposit Netzwerke aus Silizium in einer Siliziumdioxid Matrix. Die vorliegende Arbeit untersucht die Entstehung von dreidimensionalen Silizium-Nanokomposit-Netzwerken durch Abscheidung eines siliziumreichen Siliziumoxids(SiOx, mit x<2) und anschlieÿender thermischen Behandlung. Hierbei wurden die reaktive Ionenstrahl-Sputterabscheidung (IBSD), sowie das reaktive Magnetronsputtern (RMS) verglichen. Auch wurden die Unterschiede zwischen klassischer Ofen und Millisekunden-Linienlaser Behandlung untersucht. Abgeschiedene und thermisch behandelte Dünnschichten wurden hinsichtlich der integralen Zusammensetzung, Homogenität, Morphologie und Struktur mittels Rutherford-Rückstreuspektroskopie, Ramanspektroskopie, Röntgenbeugung, spektroskopische Ellipsometrie, Photospektrometrie und (Energie gefilterter) Transmissionselektronenmikroskopie untersucht. Abhängig von der Abscheidemethode und des thermischen Ausheilprozesses wurden unterschiedliche Strukturgrößen und Kristallisationsgrade erzeugt. Insbesondere wurde gezeigt, dass während der 13 ms langen Laserbearbeitung (Ofen: 90 min) wesentlich größere Strukturen (laser:~50 nm; oven:~10 nm) mit einer deutlich höheren Kristallinität (laser:~92-99%; oven:~35-80%) entstehen. Darüber hinaus erhält sich die abscheidebedingte Morphologie nach der Ofenbehandlung, verschwindet jedoch nach der Laserprozessierung. Erklärt wurde dies mit einem Prozess über die flüssige Phase während der Laserbearbeitung, im Gegensatz zu einem Festphasenprozess bei der Ofenbehandlung. Abschließend wurde gezeigt, dass absichtlich eingebrachte vertikale und horizontale Schwankungen der Zusammensetzung genutzt werden können, um definierte Silizium Nanonetzwerke mit einer dreidimensionalen quadratischen Netzstruktur herzustellen.:1 Introduction 2 Fundamentals 2.1 The silicon - silicon oxide system 2.1.1 The Si-O phase diagram 2.1.2 Chemical reaction consideration 2.2 Phase separation of binary systems 2.2.1 Phase separation regimes 2.2.2 Diffusion in solids 2.3 Different types of silicon nanostructures 2.3.1 0D - Silicon nanoparticles 2.3.2 1D - Silicon nanowires 2.3.3 3D - Silicon nanonetworks 3 Experimental methods 3.1 SiOx thin film deposition 3.1.1 SiOx thin films by ion beam sputter deposition 3.1.2 SiOx thin films by reactive magnetron sputter deposition 3.1.3 Comparison of ion beam and magnetron sputter deposition 3.2 Thermal processing of as-deposited SiOx thin films 3.2.1 Oven treatment 3.2.2 Laser treatment 3.3 Thin-film characterization 3.3.1 Rutherford backscattering 3.3.2 Spectroscopic ellipsometry and photospectrometry 3.3.3 Raman spectroscopy 3.3.4 X-ray diffraction 3.3.5 Transmission electron microscopy 4 Results 4.1 Accessible SiOx compositions as a function of deposition and annealing method 4.2 Structure and properties of ion beam sputter deposited SiOx thin films before and after thermal processing 4.2.1 Phase- and microstructure of SiO0:6 thin films deposited by ion beam sputter deposition at 450°C 4.2.2 Phase- and microstructure of SiO0.6 thin films deposited by ion beam sputter deposition at room temperature 4.3 Structure and properties of reactive magnetron sputter deposited SiOx thin films before and after thermal processing 4.4 Multilayer SiOx films for the generation of defined squared mesh structures 5 Discussion 5.1 Compositional homogeneity of SiO0:6 thin films before and after thermal treatment 5.2 Phase structure of as-deposited SiOx thin films 5.3 Influence of the thermal treatment on the structural properties of percolated Si:SiO2 nanostructures 5.3.1 Observed structural properties 5.3.2 Origin of different structure sizes - liquid vs. solid state crystallization 5.4 Influence of the deposition temperature during ion beam sputtering on the structural properties of percolated Si:SiO2 nanostructures before and after thermal processing 5.5 Influence of the deposition method on the structural properties of percolated Si:SiO2 nanostructures 5.6 Formation of interface layers and electrical characterization 6 Summary and outlook 6.1 Summary 6.2 Outlook A EFTEM imaging / Silicon-based technology determines the technological progress in the world significantly and is still a material of choice for further development of key technologies. In particular the reduction of silicon structure sizes to a nanometer scale are of great interest. Most silicon nano structures are based on spherical, dot-like or cylindrical, wire-like geometries. A relatively new material system are three dimensional percolated nanocomposite networks of silicon within a silica matrix. To form any of these nano structures fast, room temperature processes are desired which also offer the possibility of structure modification by different process management. The present work studies the formation of three-dimensional silicon nanocomposite networks by the deposition of a silicon rich silicon oxide (SiO x , with x < 2) and subsequent thermal treatment. Thereby, reactive ion beam sputter deposition (IBSD) as well as reactive magnetron sputtering (RMS) was compared. As well, the differences between a conventional oven and a millisecond line-focused diode laser were studied. As-deposited and thermally treated thin films were characterized with regard to the overall mean composition, homogeneity, morphology and structure by Rutherford backscattering, Raman spectroscopy, X-ray diffraction, spectroscopic ellipsometry, photospectrometry as well as cross-sectional and energy-filtered transmission electron microscopy. Depending on the deposition method as well as the thermal treatment process different structure sizes and degrees of crystallization were achieved. Most notably it was found, that during 13 ms laser processing (oven: min. 90 min), much bigger structures (laser: ≈ 50 nm; oven: ≈ 10 nm) with a notably higher degree of crystallization (laser: ≈ 92-99%; oven: ≈ 35-80%) evolve. Moreover, the structure morphology after deposition is preserved during oven treatment but diminishes following laser processing. This was explained by a process via the liquid phase for laser processing in contrast to a solid state process during oven treatment. Finally it was shown, that intentional introduced vertical and horizontal composition fluctuations can be used to form well-defined silicon nano-networks with a three dimensional square mesh structure.:1 Introduction 2 Fundamentals 2.1 The silicon - silicon oxide system 2.1.1 The Si-O phase diagram 2.1.2 Chemical reaction consideration 2.2 Phase separation of binary systems 2.2.1 Phase separation regimes 2.2.2 Diffusion in solids 2.3 Different types of silicon nanostructures 2.3.1 0D - Silicon nanoparticles 2.3.2 1D - Silicon nanowires 2.3.3 3D - Silicon nanonetworks 3 Experimental methods 3.1 SiOx thin film deposition 3.1.1 SiOx thin films by ion beam sputter deposition 3.1.2 SiOx thin films by reactive magnetron sputter deposition 3.1.3 Comparison of ion beam and magnetron sputter deposition 3.2 Thermal processing of as-deposited SiOx thin films 3.2.1 Oven treatment 3.2.2 Laser treatment 3.3 Thin-film characterization 3.3.1 Rutherford backscattering 3.3.2 Spectroscopic ellipsometry and photospectrometry 3.3.3 Raman spectroscopy 3.3.4 X-ray diffraction 3.3.5 Transmission electron microscopy 4 Results 4.1 Accessible SiOx compositions as a function of deposition and annealing method 4.2 Structure and properties of ion beam sputter deposited SiOx thin films before and after thermal processing 4.2.1 Phase- and microstructure of SiO0:6 thin films deposited by ion beam sputter deposition at 450°C 4.2.2 Phase- and microstructure of SiO0.6 thin films deposited by ion beam sputter deposition at room temperature 4.3 Structure and properties of reactive magnetron sputter deposited SiOx thin films before and after thermal processing 4.4 Multilayer SiOx films for the generation of defined squared mesh structures 5 Discussion 5.1 Compositional homogeneity of SiO0:6 thin films before and after thermal treatment 5.2 Phase structure of as-deposited SiOx thin films 5.3 Influence of the thermal treatment on the structural properties of percolated Si:SiO2 nanostructures 5.3.1 Observed structural properties 5.3.2 Origin of different structure sizes - liquid vs. solid state crystallization 5.4 Influence of the deposition temperature during ion beam sputtering on the structural properties of percolated Si:SiO2 nanostructures before and after thermal processing 5.5 Influence of the deposition method on the structural properties of percolated Si:SiO2 nanostructures 5.6 Formation of interface layers and electrical characterization 6 Summary and outlook 6.1 Summary 6.2 Outlook A EFTEM imaging
238

Heterogeneous epoxy-amine networks from the dispersion of cross-linked polymer microparticles / Réseaux époxy-amine hétérogènes à partir de dispersions de microparticules polymères réticulées

Michon, Marie-Laure 14 February 2014 (has links)
Lors de cette étude, il a été étudié l'influence de l'ajout de microparticules de polymère réticulé (CPM) dans des formulations d'époxy-amine, sur la cinétique, la morphologie et les propriétés thermo-mécaniques des réseaux finaux obtenus. Tout d'abord, un protocole simple, robuste et bien contrôlé a été développé afin d’ obtenir une large gamme de taille de CPM, de Tg et de fonctionnalité amine. Ce protocole de polymérisation par précipitation, basé sur les phénomènes de séparation de phases, a également été appliqué à différentes compositions chimiques et différents monomères époxy hydrosolubles, ceci montrant les grandes possibilités de cette méthode. Une bonne interface entre les CPMs et la matrice a été recherchée en synthétisant les CPMs en excès de groupes amines. La quantification de ces groupes amines réactifs sur les CPMS était d'un grand intérêt et a donc été étudiée en profondeur. Le titrage des amines de surface a été réalisé en mettant au point un nouveau protocole qui a permis la quantification des amines primaires et secondaires sur les CPMs. Il a ensuite été mis en évidence que, bien que ces microparticules réticulées ne soient pas poreuses, des fonctions amines sont disponibles au cœur des particules et peuvent réagir avec d'autres molécules qui sont capables de diffuser dans la CPM. Il a été montré que lorsque les CPM ont été dispersées dans des mélanges d'époxy- amine, la diffusion des monomères dans le cœur de la CPM s'est produite mais différemment selon le procédé de dispersion. En effet, en utilisant le tétrahydrofurane comme solvant pour aider à la dispersion, la diffusion de la DGEBA est amplifiée et modifie les propriétés thermo-mécaniques du réseau final en modifiant le rapport stœchiométrique de la matrice. Le même phénomène a été observé mais moins amplifié lorsque les microparticules sont uniquement dispersées mécaniquement. En dispersant les CPMs dans l'amine qui est l'agent réticulant, on observe l'absorption complète de l'amine au coeur des CPMs, conduisant ainsi à la désorption de celle-ci dans une deuxième étape, permettant de créer le réseau. Ainsi, un comportement très complexe des CPM a été mis en évidence en présence des monomères et/ou solvant : le gonflement et les phénomènes de diffusion qui dépendent d'un certain nombre de paramètres tels que la température, la densité de réticulation des CPM, les paramètres de solubilité, etc. L'intensité du phénomène de diffusion conduit à une variété de comportements lorsque les CPMs sont ajoutées dans une formulation d'époxy-amine tels que: (a) une légère diminution du temps de gélification et l'augmentation de la conversion, (b) la modification de la température de transition vitreuse de la matrice. / Throughout this work, the influence of the addition of cross-linked polymer microparticles (CPMs) in epoxy-amine formulations on the kinetics, morphology and thermo-mechanical properties of the final networks have been investigated. First, an easy, robust and well-controlled protocol was developed to obtain a large range of CPM size, Tg and amine functionality. This protocol based on reaction induced phase separation via precipitation polymerization was also applied to different chemistries and water soluble epoxy pre-polymers showing the large possibilities of this method. The capacity of obtaining a good compatibility between the CPMs and the matrix was ensure by synthesizing the CPMs in excess of amino groups. The study of the remaining reactive amino groups on the CPMS was of great interest and therefore deeply investigated. The titration of the surface amine was performed by developing a new protocol that enabled the quantification of primary and secondary amines on CPMs. It was then highlighted that even though these cross-linked microparticles were not porous, amino groups are available into the core and can react with other molecules that are able to diffuse into the CPM core. It was shown that when CPMs were dispersed into epoxy-amine blends, the diffusion of monomers into the CPM core occurred but differently depending on the dispersion process. Indeed, using tetrahydrofuran as solvent to help for the dispersion increased the diffusion of DGEBA into the CPM core and changed the thermo-mechanical properties of the final network by modifying the stoichiometric ratio of the matrix. Same phenomenon was observed but less amplified when CPMs were mechanically dispersed in DGEBA. Regarding the dispersion of CPMs in the amine cross-linker, IPD, its complete absorption could be observed into the CPMs, leading then to the desorption of IPD to create the network. Thus, a very complex behavior of CPMs was highlighted in presence of monomers or/and solvent: swelling and diffusion phenomena that are dependent on a number of parameters such as temperature, CPM cross-link density, solubility parameters, etc. The intensity of those phenomena leads to a variety of behaviors when CPMs are added into an epoxy-amine formulation: (a) slight decrease of gel times and increase of conversion, (b) modification of glass transition temperature of the matrix.
239

Investigations intothe crystallization of butyl paraben

Yang, Huaiyu January 2011 (has links)
In thisproject, solubility of butyl paraben in 7 puresolvents and 5 ethanol aqueous solvents has been determined at from 1 ℃to 50 ℃. Thermodynamic properties of butyl paraben have been measured by DifferentialScanning Calorimetey. Relationship between molar solubility of butyl paraben in6 pure solvents and thermodynamic properties has been analyzed. Thisrelationship suggests a method of estimating activity of solute at equilibrium fromcombining solubility data with DSC measurements. Then, activity coefficient accordingto the solubility at different temperatures can be estimated. Duringthe solubility measurements in ethanol aqueous solvents, it is found that whenbutyl paraben is added into aqueous solutions with certain proportion ethanol,solutions separates into two immiscible liquid layers in equilibrium. Water andethanol are primary in top layer, while the butyl paraben is primary in bottomlayer, but the solution turns to cloudy when two layers of solution are mixed. Theaim of this work was to present the phase behaviour of liquid-liquid-phaseseparation for (butyl paraben + water + ethanol) ternary system from 1 ℃ to 50 ℃at atmospheric pressure. Thearea of liquid-liquid-phase separation region in the ternary phase diagram increaseswith the increasing temperature from 10 ℃to 50 ℃. In thisstudy, more than several hundreds of nucleation experiments of butyl paraben havebeen investigated in ethyl acetate, propanol, acetone and 90% ethanol aqueoussolution. Induction time of butyl paraben has been determined at 3 differentsupersaturation levels in these solvents, respectively. Free energy ofnucleation, solid-liquid interfacial energy, and nuclei critical radius havebeen determined according to the classical nucleation theory. Statistical analysis ofinduction time reveals that the nucleation is a stochastic process with widevariation even at the same experiment condition. Butyl paraben nucleates most difficultlyin 90 % ethanol than in other 3 solvents, and most easily in acetone. The interfacialenergy of butyl paraben in these solvents tends to increasing with decreasemole fraction solubility in these solvents. Coolingcrystallizations with different proportions of butyl paraben, water and ethanolhave been observed by Focused Beam Reflectance Method, Parallel VirtualMachine, and On-line Infrared. The FBRM, IR curves and the PVM photos show someof the solutions appeared liquid-liquid phase separation during coolingcrystallization process. The results suggest that if solutions went throughliquid-liquid phase separation region during the cooling crystallizationprocess the distribution of crystals crystal was poor. Droplets from solutions withsame proportion butyl paraben but different proportions of water and ethanolhave been observed under microscope. Induction time of the droplets has been determinedunder the room temperature. Droplets from top layer or bottom layer of solutionwith liquid-liquid phase separation on small glass or plastic plates were alsoobserved under microscope. The microscope photos show that the opposite flows ofcloudy solution on the glass and the plastic plate before nucleation. The resultsof the cooling and evaporation crystallization experiments both revealed thatnucleation would be prevented by the liquid-liquid phase separation. / QC 20110630
240

Solid-State NMR Characterization of the Structure and Morphology of Bulk Heterojunction Solar Cells

Baughman, Jessi Alan 20 August 2012 (has links)
No description available.

Page generated in 0.1245 seconds