• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 93
  • 12
  • 12
  • 8
  • 5
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 165
  • 165
  • 39
  • 37
  • 33
  • 30
  • 27
  • 22
  • 21
  • 20
  • 19
  • 19
  • 18
  • 18
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Phase field modeling of flaw-induced hydride precipitation kinetics in metals

Nigro, Claudio F. January 2017 (has links)
Hydrogen embrittlement can manifest itself as hydride formation in structures when in contact with hydrogen-rich environments, e.g. in space and nuclear power applications. To supplant experimentation, modeling of such phenomena is beneficial to make life prediction reduce cost and increase the understanding. In the present work, two different approaches based on phase field theory are employed to study the precipitation kinetics of a second phase in a metal, with a special focus on the application of hydride formation in hexagonal close-packed metals. For both presented models, a single component of the non-conserved order parameter is utilized to represent the microstructural evolution. Throughout the modelling the total free energy of the system is minimized through the time-dependent Ginzburg-Landau equation, which includes a sixth order Landau potential in the first model, whereas one of fourth order is used for the second model. The first model implicitly incorporates the stress field emanating from a sharp crack through the usage of linear elastic fracture mechanics and the governing equation is solved numerically for both isotropic and anisotropic bodies by usage of the finite volume method. The second model is applied to plate and notched cantilever geometries, and it includes an anisotropic expansion of the hydrides that is caused by the hydride precipitation. For this approach, the mechanical and phase transformation aspects are coupled and solved simultaneously for an isotropic material using the finite element method. Depending on the Landau potential coefficients and the crack-induced hydrostatic stress, for the first model the second-phase is found to form in a confined region around the crack tip or in the whole material depending on the material properties. From the pilot results obtained with the second model, it is shown that the applied stress and considered anisotropic swelling induces hydride formation in preferential directions and it is localized in high stress concentration areas. The results successfully demonstrate the ability of both approaches to model second-phase formation kinetics that is triggered by flaw-induced stresses and their capability to reproduce experimentally observed hydride characteristics such as precipitation location, shape and direction. / <p>Note: The papers are not included in the fulltext online.</p><p>Paper I and II in thesis as manuscripts.</p>
142

Coarse-grained modeling of crystals by the amplitude expansion of the phase-field crystal model: an overview

Salvalaglio, Marco, Elder, Ken R 22 May 2024 (has links)
Comprehensive investigations of crystalline systems often require methods bridging atomistic and continuum scales. In this context, coarse-grained mesoscale approaches are of particular interest as they allow the examination of large systems and time scales while retaining some microscopic details. The so-called phase-field crystal (PFC) model conveniently describes crystals at diffusive time scales through a continuous periodic field which varies on atomic scales and is related to the atomic number density. To go beyond the restrictive atomic length scales of the PFC model, a complex amplitude formulation was first developed by Goldenfeld et al (2005 Phys. Rev. E 72 020601). While focusing on length scales larger than the lattice parameter, this approach can describe crystalline defects, interfaces, and lattice deformations. It has been used to examine many phenomena including liquid/solid fronts, grain boundary energies, and strained films. This topical review focuses on this amplitude expansion of the PFC model and its developments. An overview of the derivation, connection to the continuum limit, representative applications, and extensions is presented. A few practical aspects, such as suitable numerical methods and examples, are illustrated as well. Finally, the capabilities and bounds of the model, current challenges, and future perspectives are addressed.
143

Multiscale Thermo-Hydro-Mechanics of Frozen Soil: Numerical Frameworks and Constitutive Models

Malekzade Kebria, Mahyar January 2024 (has links)
This study introduces numerical frameworks for simulating the interactions within soil systems subjected to freezing and thawing processes, crucial for addressing geotechnical challenges in cold regions. By integrating robust thermo-hydro-mechanical (THM), this research offers a general understanding and specific insights into the deformation, thermal, and moisture transport behaviors of freezing-thawing soils. The first part of this study presents a soil freezing characteristic curve (SFCC) adaptable to various computational frameworks, including THM models. The SFCC, enhanced by an automatic regression scheme and a smoothing algorithm, accommodates the dynamic changes in soil properties due to phase transitions. This model effectively captures the unique behaviors of different soil types under freezing conditions, addressing key factors such as freezing temperature, compaction, and mechanical loading. Building on this foundation, the second framework employs the phase-field method (PFM) coupled with THM to model the behavior of ice-rich saturated porous media. This approach advances the field by enabling distinct representations of the mechanical behaviors of ice and soil through a diffused interface, introducing anisotropic responses as the soil undergoes freezing. By integrating a transversely isotropic plastic constitutive model for ice, this method provides a tool for capturing the phase transition processes and the resulting mechanical responses of frozen soil. The third part extends these methodologies to model thaw consolidation in permafrost regions using a THM framework combined with phase field methods. This model incorporates internal energy functions and a multiscale modified Cam-Clay model within a damage phase field framework, adept at capturing the simultaneous effects of phase change and particle rearrangement. Through validation against experimental scenarios, this model demonstrates its effectiveness in understanding the microstructural evolution and plastic softening in thaw-sensitive soils, which is vital for enhancing infrastructure resilience under thaw conditions. Together, these integrated approaches represent a leap in the modeling and simulation of geotechnical behaviors in cold regions, offering potential applications in predicting and mitigating the impacts of climate change on permafrost and other freeze-thaw affected terrains. / Thesis / Doctor of Science (PhD)
144

\"Simulações de escoamentos tridimensionais bifásicos empregando métodos adaptativos e modelos de campo fase\" / \"Simulations of 3D two-phase flows using adaptive methods and phase field models\"

Nós, Rudimar Luiz 20 March 2007 (has links)
Este é o primeiro trabalho que apresenta simulações tridimensionais completamente adaptativas de um modelo de campo de fase para um fluido incompressível com densidade de massa constante e viscosidade variável, conhecido como Modelo H. Solucionando numericamente as equações desse modelo em malhas refinadas localmente com a técnica AMR, simulamos computacionalmente escoamentos bifásicos tridimensionais. Os modelos de campo de fase oferecem uma aproximação física sistemática para investigar fenômenos que envolvem sistemas multifásicos complexos, tais como fluidos com camadas de mistura, a separação de fases sob forças de cisalhamento e a evolução de micro-estruturas durante processos de solidificação. Como as interfaces são substituídas por delgadas regiões de transição (interfaces difusivas), as simulações de campo de fase requerem muita resolução nessas regiões para capturar corretamente a física do problema em estudo. Porém essa não é uma tarefa fácil de ser executada numericamente. As equações que caracterizam o modelo de campo de fase contêm derivadas de ordem elevada e intrincados termos não lineares, o que exige uma estratégia numérica eficiente capaz de fornecer precisão tanto no tempo quanto no espaço, especialmente em três dimensões. Para obter a resolução exigida no tempo, usamos uma discretização semi-implícita de segunda ordem para solucionar as equações acopladas de Cahn-Hilliard e Navier-Stokes (Modelo H). Para resolver adequadamente as escalas físicas relevantes no espaço, utilizamos malhas refinadas localmente que se adaptam dinamicamente para recobrir as regiões de interesse do escoamento, como por exemplo, as vizinhanças das interfaces do fluido. Demonstramos a eficiência e a robustez de nossa metodologia com simulações que incluem a separação dos componentes de uma mistura bifásica, a deformação de gotas sob cisalhamento e as instabilidades de Kelvin-Helmholtz. / This is the first work that introduces 3D fully adaptive simulations for a phase field model of an incompressible fluid with matched densities and variable viscosity, known as Model H. Solving numerically the equations of this model in meshes locally refined with AMR technique, we simulate computationally tridimensional two-phase flows. Phase field models offer a systematic physical approach to investigate complex multiphase systems phenomena such as fluid mixing layers, phase separation under shear and microstructure evolution during solidification processes. As interfaces are replaced by thin transition regions (diffuse interfaces), phase field simulations need great resolution in these regions to capture correctly the physics of the studied problem. However, this is not an easy task to do numerically. Phase field model equations have high order derivatives and intricate nonlinear terms, which require an efficient numerical strategy that can achieve accuracy both in time and in space, especially in three dimensions. To obtain the required resolution in time, we employ a semi-implicit second order discretization scheme to solve the coupled Cahn-Hilliard/Navier-Stokes equations (Model H). To resolve adequatly the relevant physical scales in space, we use locally refined meshes which adapt dynamically to cover special flow regions, e.g., the vicinity of the fluid interfaces. We demonstrate the efficiency and robustness of our methodology with simulations that include spinodal decomposition, the deformation of drops under shear and Kelvin-Helmholtz instabilities.
145

Controlabilidade, problema inverso, problema de contato e estabilidade para alguns sistemas hiperbólicos e parabólicos

Sousa Neto, Gilcenio Rodrigues de 30 November 2016 (has links)
Submitted by ANA KARLA PEREIRA RODRIGUES (anakarla_@hotmail.com) on 2017-08-23T16:00:02Z No. of bitstreams: 1 arquivototal.pdf: 9090532 bytes, checksum: d4fefb1d97e9c6d585d5d18a33abf752 (MD5) / Made available in DSpace on 2017-08-23T16:00:02Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 9090532 bytes, checksum: d4fefb1d97e9c6d585d5d18a33abf752 (MD5) Previous issue date: 2016-11-30 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In this thesis we study controllability results, asymptotic behavior and inverse problem related to some problems of the theory of partial di erential equations. Two particular systems are the focus of the study: the Mindin-Timoshenko system, describing the vibrational motion of a plate or a beam, and the phase eld system describing the temperature and phase of a medium having two distinct physical states. The rst chapter is devoted to the study of the 1-D Mindlin-Timoshenko system with discontinuous coe cient. A Carleman inequality is obtained under the assumption of monotonicity on the beam speed. Subsequently, two applications are provided: the controllability of the control system acting on the boundary and Lipschitzian stability of the inverse problem of recovering a potential from a single measurement of the solution. In the second chapter we consider a contact problem characterized by the behavior of a two-dimensional plate whose board makes contact with a rigid obstacle. The formulation of this problem is presented by the 2-D Mindlin-Timoshenko system with boundary conditions and suitable damping terms. Concerning such system, is proved via penalty techniques, the existence of solution and that the system energy has exponential decay when the time approaches in nity. In the third chapter, the study is aimed at a nonlinear phase- eld system de ned in a real open interval. Here we present some controllability results when a single control acts, by means of Dirichlet conditions, on the temperature equation of the system on one of the endpoints of the interval. To prove the results is used the method of moments, plus a spectral study of operators associated to the system and xed point theory to deal with the nonlinearity. / Nesta tese estudamos resultados de controlabilidade, comportamento assintótico e problema inverso relacionados a alguns problemas da teoria de equações diferenciais parciais. Dois sistemas particulares são foco do estudo: o sistema de Mindin-Timoshenko, que descreve o movimento vibratório de uma placa ou viga, e o sistema de campo de fases que descreve a temperatura e a fase de um meio onde ocorrem dois estados físicos distintos. O primeiro capítulo é dedicado ao estudo do sistema de Mindlin-Timoshenko 1-D com coe ciente descontínuos. Uma desigualdade de Carleman é obtida sob a hipótese de monotonicidade sobre velocidade da viga. Posteriormente, são fornecidas duas aplicações: a controlabilidade do sistema com controles agindo na fronteira e a estabilidade Lipschitziana do problema inverso de recuperar um potencial através de uma única informação obtida sobre a solução. No segundo capítulo consideramos um problema de contato caracterizado pelo comportamento de uma placa bidimensional cujo bordo faz contato com um obstáculo rígido. A formulação deste problema é apresentada pelo sistema de Mindlin-Timoshenko 2-D com condi ções de fronteira e termos de amortecimento (damping) adequados. Sobre tal sistema, é provada, através de técnicas de penalização, a existência de solução e, posteriormente, que sua energia possui decaimento exponencial quando o tempo tende ao in nito. No terceiro capítulo o estudo é voltado a um sistema de campo de fases não-linear de nido em um intervalo aberto real. Neste espaço apresentamos alguns resultados de controlabilidade quando um único controle age, sob condições de Dirichlet, na equação da temperatura em um dos bordos do intervalo. Para provar os resultados é utilizado o método dos momentos, além de uma estudo espectral de operadores associados ao sistema e teoria de ponto xo para lidar com a não-linearidade.
146

\"Simulações de escoamentos tridimensionais bifásicos empregando métodos adaptativos e modelos de campo fase\" / \"Simulations of 3D two-phase flows using adaptive methods and phase field models\"

Rudimar Luiz Nós 20 March 2007 (has links)
Este é o primeiro trabalho que apresenta simulações tridimensionais completamente adaptativas de um modelo de campo de fase para um fluido incompressível com densidade de massa constante e viscosidade variável, conhecido como Modelo H. Solucionando numericamente as equações desse modelo em malhas refinadas localmente com a técnica AMR, simulamos computacionalmente escoamentos bifásicos tridimensionais. Os modelos de campo de fase oferecem uma aproximação física sistemática para investigar fenômenos que envolvem sistemas multifásicos complexos, tais como fluidos com camadas de mistura, a separação de fases sob forças de cisalhamento e a evolução de micro-estruturas durante processos de solidificação. Como as interfaces são substituídas por delgadas regiões de transição (interfaces difusivas), as simulações de campo de fase requerem muita resolução nessas regiões para capturar corretamente a física do problema em estudo. Porém essa não é uma tarefa fácil de ser executada numericamente. As equações que caracterizam o modelo de campo de fase contêm derivadas de ordem elevada e intrincados termos não lineares, o que exige uma estratégia numérica eficiente capaz de fornecer precisão tanto no tempo quanto no espaço, especialmente em três dimensões. Para obter a resolução exigida no tempo, usamos uma discretização semi-implícita de segunda ordem para solucionar as equações acopladas de Cahn-Hilliard e Navier-Stokes (Modelo H). Para resolver adequadamente as escalas físicas relevantes no espaço, utilizamos malhas refinadas localmente que se adaptam dinamicamente para recobrir as regiões de interesse do escoamento, como por exemplo, as vizinhanças das interfaces do fluido. Demonstramos a eficiência e a robustez de nossa metodologia com simulações que incluem a separação dos componentes de uma mistura bifásica, a deformação de gotas sob cisalhamento e as instabilidades de Kelvin-Helmholtz. / This is the first work that introduces 3D fully adaptive simulations for a phase field model of an incompressible fluid with matched densities and variable viscosity, known as Model H. Solving numerically the equations of this model in meshes locally refined with AMR technique, we simulate computationally tridimensional two-phase flows. Phase field models offer a systematic physical approach to investigate complex multiphase systems phenomena such as fluid mixing layers, phase separation under shear and microstructure evolution during solidification processes. As interfaces are replaced by thin transition regions (diffuse interfaces), phase field simulations need great resolution in these regions to capture correctly the physics of the studied problem. However, this is not an easy task to do numerically. Phase field model equations have high order derivatives and intricate nonlinear terms, which require an efficient numerical strategy that can achieve accuracy both in time and in space, especially in three dimensions. To obtain the required resolution in time, we employ a semi-implicit second order discretization scheme to solve the coupled Cahn-Hilliard/Navier-Stokes equations (Model H). To resolve adequatly the relevant physical scales in space, we use locally refined meshes which adapt dynamically to cover special flow regions, e.g., the vicinity of the fluid interfaces. We demonstrate the efficiency and robustness of our methodology with simulations that include spinodal decomposition, the deformation of drops under shear and Kelvin-Helmholtz instabilities.
147

Geometry controlled phase behavior in nanowetting and jamming / Effet géométriques dans les transitions de mouillage et dans la physique des empilements désordonnés

Mickel, Walter 30 September 2011 (has links)
Cette thèse porte sur différents aspects géométriques et morphologiques concernant des problèmes de mouillage et d'empilement de sphères. Nous proposons tout d'abord une nouvelle méthode de simulation pour étudier le mouillage et le glissement d'un liquide sur une surface nanostructurée: un modèle de champ de phase en lien avec la théorie de la fonctionnelle de la densité dynamique. Nous étudions grâce à cette méthode la possibilité de transformer une surface quelconque en surface omniphobe (c'est à dire qui repousse tous les liquides). Nous montrons que contrairement à la théorie classique de Cassie-Baxter-Wenzel, il est possible d'inverser la mouillabilité d'une surface en la texturant, et nous montrons qu'une surface monovaluée, i.e. sans constrictions, peut produire un comportement omniphobe c'est à dire repousser tous les liquides grâce à un effet de pointe. La géométrie a également un effet considérable dans les milieux vitreux ou bloqués. Les empilements aléatoires de sphères conduisent par exemple à des état bloqués ("jamming") et nous montrons que la structure locale de ces systèmes est universelle, c'est à dire indépendante de la méthode de préparation. Pour cela, nous introduisons des paramètres d'ordre - les tenseurs de Minkowski - qui suppriment les problèmes de robustesse qu'ont les paramètres d'ordre utilisés classiquement. Ces nouveaux paramètres d'ordre conduisent à une vision unifiée, basée sur des principes géométriques. Enfin, nous montrons grâce aux tenseurs de Minkowski que les empilements de sphères se mettent à cristalliser au delà du point d'empilement aléatoire le plus dense ("random close packing") / This thesis is devoted to several aspects of geometry and morphology in wetting problems and hard sphere packings. First, we propose a new method to simulate wetting and slip on nanostructured substrates: a phase field model associated with a dynamical density theory approach. We showed omniphobicity, meaning repellency, no matter the chemical properties of the liquid on monovalued surfaces, i.e. surfaces without overhangs, which is in contradiction with the macroscopic Cassie-Baxter-Wenzel theory, can produce so-called We checked systematically the impact of the surface parameters on omniphobic repellency, and we show that the key ingredient are line tensions, which emerge from needle shaped surface structures. Geometrical effects have also an important influence on glassy or jammed systems, for example amorphous hard sphere systems in infinite pressure limit. Such hard sphere packings got stuck in a so-called jammed phase, and we shall demonstrate that the local structure in such systems is universal, i.e. independent of the protocol of the generation. For this, robust order parameters - so-called Minkowski tensors - are developed, which overcome robustness deficiencies of widely used order parameters. This leads to a unifying picture of local order parameters, based on geometrical principles. Furthermore, we find with the Minkowski tensor analysis crystallization in jammed sphere packs at the random closed packing point
148

Équations d'évolution stochastiques locales et non locales dans des problèmes de transition de phase. / Local and Nonlocal Stochastic Evolution Equations in Phase Transition Problems.

El kettani, Perla 27 November 2018 (has links)
Le but de cette thèse est de développer des méthodes de démonstration d’existence et d’unicité de solutions d’équations d’évolution stochastiques locales ou non locales dans les problèmes de transition de phase. Au chapitre 1, nous étudions un problème à valeur initiale pour une ´équation de réaction-diffusion stochastique non locale avec des conditions aux limites de Neumann homogènes dans un ouvert borné de ℝn de frontière suffisamment régulière. On considère le cas d’un opérateur elliptique non linéaire assez général et on suppose que le bruit est additif et induit par un processus Q-Wiener. Le problème déterministe modélise la séparation de phases dans des alliages binaires. La démonstration d’existence de la solution du problème stochastique est basée sur un changement de fonction qui fait intervenir la solution de l’équation de la chaleur stochastique avec un terme de diffusion non linéaire. On est ainsi conduit à l'étude d’un problème sans terme de bruit, ce qui facilite l’application de la méthode de monotonie pour identifier la limite des termes non linéaires. Au chapitre 2, nous démontrons l’existence et l’unicité de la solution d’un système de champ de phase stochastique avec des bruits multiplicatifs induits par des processus Q-Wiener. Les problèmes de champ de phase sont utilisés pour d´écrire des modèles où deux phases distinctes interviennent comme par exemple l’eau et la glace. Dans ce but, nous appliquons la méthode de Galerkin et nous établissons des estimations a priori pour la solution approchée. Nous nous appuyons ensuite sur la méthode de monotonie stochastique pour identifier la limite du terme non linéaire. Finalement, au chapitre 3, nous démontrons l’existence et l’unicité d’une solution trajectorielle en dimension d’espace d ≤ 6 pour l’équation d’Allen-Cahn non locale stochastique avec un bruit multiplicatif induit par un processus Q-Wiener. La présence d’une variable supplémentaire empêche l’application des théorèmes de compacité usuels utilisés dans les problèmes déterministes. C’est ce qui nous amène à appliquer la méthode de compacité stochastique. / The aim of this thesis is to develop methods for proving the existence and uniqueness of solutionsof local and nonlocal stochastic evolution equations in phase transition problems. In chapter 1, we studyan initial value problem for a nonlocal stochastic reaction-diffusion equation with homogeneous Neumannboundary conditions in an open bounded set of ℝn, with a smooth boundary. We consider the case of ageneral nonlinear elliptic operator and we suppose that the noise is additive and induced by a Q-Wiener process.The deterministic problem with a linear diffusion term is used to model phase separation in a binarymixture. The proof of existence for the stochastic problem is based on a change of function which involvesthe solution of the stochastic heat equation with a nonlinear diffusion term. We obtain a problem withoutthe noise term. This simplifies the application of the monotonicity method, which we use to identify thelimit of the nonlinear terms. In chapter 2, we prove the existence and uniqueness of the solution for a phasefield problem with multiplicative noises induced by Q-Wiener processes. This problem models for instancethe process of melting and solidification. To that purpose we apply the Galerkin method and derive a prioriestimates for the approximate solutions. The last step is to identify the limit of the nonlinear terms whichwe do by the so-called stochastic monotonicity method. Finally, in chapter 3, we prove the existence anduniqueness of a pathwise solution in space dimension up to 6 for the stochastic nonlocal Allen-Cahn equationwith a multiplicative noise induced by a Q-Wiener process. The usual compactness method for deterministicproblems cannot be applied in a stochastic context because of the additional probability variable. Therefore,we apply the stochastic compactness method.
149

Modeling of Precipitation by Structural Phase-Field Crystal Method / Modellering av utfällningar genom structural fasfältskristall method

Holmberg-Kasa, Jacob January 2021 (has links)
Nickel-based alloys are used in components such gas turbines within the aerospace industry and electric power generation due to its high tensile, rapture and creep strength. Increasing the efficiency of gas turbines are crucial to reduce emissions within the aerospace industry and increasing power gain for electric power generation. Innovation to increase the efficiency relies in part on the development of new nickel-based alloys with beneficial material properties. But also on stable and predictable material behavior during processing and post-processing of the components in the gas turbine. In two prominent material processing fields of precipitation hardened nickel-based alloys, additive manufacturing and welding, strain-age cracking (SAC) is a common phenomenon. SAC is a solid state phenomenon that generally occurs in alloys strengthened with 𝛾′, L12(Pm3m), or 𝛾′′, D022(I4/mmm), phase precipitates during post weld heat treatment or reheating where it manifests as intergranular cracking. Even though the existence of SAC has been known for several decades, its dominant mechanisms are still under considerable debate and the undertaken modeling efforts to gain insight on the phenomenon are virtually non-existent. This study aims to clarify the dominant mechanisms behind strain-age cracking. Breaching this gap would allow for new development for nickel-based alloys within both additive manufacturing and welding. To that extent the goal of this study is to provide tools to aid in clarifying the dominant mechanisms behind strain-age cracking. This is done by implementing the recently developed structural phase-field crystal (XPFC) model and examining the capabilities to model a precipitation event during reheating for a reference binary alloy in two dimensions. To evaluate the strain because of precipitation, a simple method based on the principles of neutron and synchrotron strain scanning is outlined and tested on the limited precipitation event achieved within the study. The XPFC model is capable of modeling precipitation with some restrictions that need further development with extended computational recourses. Lastly, the possibilities to extend the implemented XPFC model to cover nickel-based alloys is discussed.
150

Phase-field modeling of solidification and coarsening effects in dendrite morphology evolution and fragmentation

Neumann-Heyme, Hieram 17 September 2018 (has links)
Dendritic solidification has been the subject of continuous research, also because of its high importance in metal production. The challenge of predicting macroscopic material properties due to complex solidification processes is complicated by the multiple physical scales and phenomena involved. Practical modeling approaches are still subject to significant limitations due to remaining gaps in the systematic understanding of dendritic microstructure formation. The present work investigates some of these problems at the microscopic level of interfacial morphology using phase-field simulations. The employed phase-field models are implemented within a finite-element framework, allowing efficient and scalable computations on high-performance computing facilities. Particular emphasis is placed on the evolution and interaction of dendrite sidebranches in the broader context of dendrite fragmentation, varying and dynamical solidification conditions.

Page generated in 0.0428 seconds