• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 11
  • 11
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Modified Genetic Algorithm Applied to Horizontal Well Placement Optimization in Gas Condensate Reservoirs

Morales, Adrian 2010 December 1900 (has links)
Hydrocarbon use has been increasing and will continue to increase for the foreseeable future in even the most pessimistic energy scenarios. Over the past few decades, natural gas has become the major player and revenue source for many countries and multinationals. Its presence and power share will continue to grow in the world energy mix. Much of the current gas reserves are found in gas condensate reservoirs. When these reservoirs are allowed to deplete, the pressure drops below the dew point pressure and a liquid condensate will begin to form in the wellbore or near wellbore formation, possibly affecting production. A field optimization includes determining the number of wells, type (vertical, horizontal, multilateral, etc.), trajectory and location of wells. Optimum well placement has been studied extensively for oil reservoirs. However, well placement in gas condensate reservoirs has received little attention when compared to oil. In most cases involving a homogeneous gas reservoir, the optimum well location could be determined as the center of the reservoir, but when considering the complexity of a heterogeneous reservoir with initial compositional variation, the well placement dilemma does not produce such a simple result. In this research, a horizontal well placement problem is optimized by using a modified Genetic Algorithm. The algorithm presented has been modified specifically for gas condensate reservoirs. Unlike oil reservoirs, the cumulative production in gas reservoirs does not vary significantly (although the variation is not economically negligible) and there are possibly more local optimums. Therefore the possibility of finding better production scenarios in subsequent optimization steps is not much higher than the worse case scenarios, which delays finding the best production plan. The second modification is developed in order to find optimum well location in a reservoir with geological uncertainties. In this modification, for the first time, the probability of success of optimum production is defined by the user. These modifications magnify the small variations and produce a faster convergence while also giving the user the option to input the probability of success when compared to a Standard Genetic Algorithm.
2

Optimal Reservoir Management and Well Placement Under Geologic Uncertainty

Taware, Satyajit Vijay 2012 August 1900 (has links)
Reservoir management, sometimes referred to as asset management in the context of petroleum reservoirs, has become recognized as an important facet of petroleum reservoir development and production operations. In the first stage of planning field development, the simulation model is calibrated to dynamic data (history matching). One of the aims of the research is to extend the streamline based generalized travel time inversion method for full field models with multimillion cells through the use of grid coarsening. This makes the streamline based inversion suitable for high resolution simulation models with decades long production history and numerous wells by significantly reducing the computational effort. In addition, a novel workflow is proposed to integrate well bottom-hole pressure data during model calibration and the approach is illustrated via application to the CO2 sequestration. In the second stage, field development strategies are optimized. The strategies are primarily focused on rate optimization followed by infill well drilling. A method is proposed to modify the streamline-based rate optimization approach which previously focused on maximizing sweep efficiency by equalizing arrival time of the waterfront to producers, to account for accelerated production for improving the net present value (NPV). Optimum compromise between maximizing sweep efficiency and maximizing NPV can be selected based on a 'trade-off curve.' The proposed method is demonstrated on field scale application considering geological uncertainty. Finally, a novel method for well placement optimization is proposed that relies on streamlines and time of flight to first locate the potential regions of poorly swept and drained oil. Specifically, the proposed approach utilizes a dynamic measure based on the total streamline time of flight combined with static and dynamic parameters to identify "Sweet-Spots" for infill drilling. The "Sweet-Spots" can be either used directly as potential well-placement locations or as starting points during application of a formal optimization technique. The main advantage of the proposed method is its computational efficiency in calculating dynamic measure map. The complete workflow was also demonstrated on a multimillion cell reservoir model of a mature carbonate field with notable success. The infill locations based on dynamic measure map have been verified by subsequent drilling.
3

Optimal Gateway Placement in Low-cost Smart Cities

Madamori, Oluwashina 01 January 2019 (has links)
Rapid urbanization burdens city infrastructure and creates the need for local governments to maximize the usage of resources to serve its citizens. Smart city projects aim to alleviate the urbanization problem by deploying a vast amount of Internet-of-things (IoT) devices to monitor and manage environmental conditions and infrastructure. However, smart city projects can be extremely expensive to deploy and manage partly due to the cost of providing Internet connectivity via 5G or WiFi to IoT devices. This thesis proposes the use of delay tolerant networks (DTNs) as a backbone for smart city communication; enabling developing communities to become smart cities at a fraction of the cost. A model is introduced to aid policy makers in designing and evaluating the expected performance of such networks and results are presented based on a public transit network data-set from Chapel Hill, North Carolina and Louisville, Kentucky. We also demonstrate that the performance of our network can be optimized using algorithms associated on set-cover and Influence maximization problems. Several optimization algorithms are then developed to facilitate the effective placement of gateways within the network model and these algorithms are shown to outperform traditional centrality-based algorithms in terms of cost-efficiency and network performance. Finally, other innovative ways of improving network performance in a low-cost smart city is discussed.
4

Profilem řízené optimalizace pro instrukční vyrovnávací paměti / Profile-Guided Optimizations for Instruction Caches

Bobek, Jiří January 2015 (has links)
Instruction cache performance is very important for the overall performance of a computer. The placement of code blocks in memory can significantly affect the cache miss rate. This means that a compiler can improve the performance of a program by placing parts of code at the right addresses in memory. This work discusses several methods for collecting profile information, and describes an algorithm that uses profile information to guide code block placement. Additionally, the algorithm is added into the optimizer of the LLVM compiler, and improvements in cache performance are evaluated.
5

Coordinated, Multi-Arm Manipulation with Soft Robots

Kraus, Dustan Paul 01 October 2018 (has links)
Soft lightweight robots provide an inherently safe solution to using robots in unmodeled environments by maintaining safety without increasing cost through expensive sensors. Unfortunately, many practical problems still need to be addressed before soft robots can become useful in real world tasks. Unlike traditional robots, soft robot geometry is not constant but can change with deflation and reinflation. Small errors in a robot's kinematic model can result in large errors in pose estimation of the end effector. This error, coupled with the inherent compliance of soft robots and the difficulty of soft robot joint angle sensing, makes it very challenging to accurately control the end effector of a soft robot in task space. However, this inherent compliance means that soft robots lend themselves nicely to coordinated multi-arm manipulation tasks, as deviations in end effector pose do not result in large force buildup in the arms or in the object being manipulated. Coordinated, multi-arm manipulation with soft robots is the focus of this thesis. We first developed two tools enabling multi-arm manipulation with soft robots: (1) a hybrid servoing control scheme for task space control of soft robot arms, and (2) a general base placement optimization for the robot arms in a multi-arm manipulation task. Using these tools, we then developed and implemented a simple multi-arm control scheme. The hybrid servoing control scheme combines inverse kinematics, joint angle control, and task space servoing in order to reduce end effector pose error. We implemented this control scheme on two soft robots and demonstrated its effectiveness in task space control. Having developed a task space controller for soft robots, we then approached the problem of multi-arm manipulation. The placement of each arm for a multi-arm task is non-trivial. We developed an evolutionary optimization that finds the optimal arm base location for any number of user-defined arms in a user-defined task or workspace. We demonstrated the utility of this optimization in simulation, and then used it to determine the arm base locations for two arms in two real world coordinated multi-arm manipulation tasks. Finally, we developed a simple multi-arm control scheme for soft robots and demonstrated its effectiveness using one soft robot arm, and one rigid robot with low-impedance torque control. We placed each arm base in the pose determined by the base placement optimization, and then used the hybrid servoing controller in our multi-arm control scheme to manipulate an object through two desired trajectories.
6

Inverse Problems in Structural Mechanics

Li, Jing 29 December 2005 (has links)
This dissertation deals with the solution of three inverse problems in structural mechanics. The first one is load updating for finite element models (FEMs). A least squares fitting is used to identify the load parameters. The basic studies are made for geometrically linear and nonlinear FEMs of beams or frames by using a four-noded curved beam element, which, for a given precision, may significantly solve the ill-posed problem by reducing the overall number of degrees of freedom (DOF) of the system, especially the number of the unknown variables to obtain an overdetermined system. For the basic studies, the unknown applied load within an element is represented by a linear combination of integrated Legendre polynomials, the coefficients of which are the parameters to be extracted using measured displacements or strains. The optimizer L-BFGS-B is used to solve the least squares problem. The second problem is the placement optimization of a distributed sensing fiber optic sensor for a smart bed using Genetic Algorithms (GA), where the sensor performance is maximized. The sensing fiber optic cable is represented by a Non-uniform Rational B-Splines (NURBS) curve, which changes the placement of a set of infinite number of the infinitesimal sensors to the placement of a set of finite number of the control points. The sensor performance is simplified as the integration of the absolute curvature change of the fiber optic cable with respect to a perturbation due to the body movement of a patient. The smart bed is modeled as an elastic mattress core, which supports a fiber optic sensor cable. The initial and deformed geometries of the bed due to the body weight of the patient are calculated using MSC/NASTRAN for a given body pressure. The deformation of the fiber optic cable can be extracted from the deformation of the mattress. The performance of the fiber optic sensor for any given placement is further calculated for any given perturbation. The third application is stiffened panel optimization, including the size and placement optimization for the blade stiffeners, subject to buckling and stress constraints. The present work uses NURBS for the panel and stiffener representation. The mesh for the panel is generated using DistMesh, a triangulation algorithm in MATLAB. A NASTRAN/MATLAB interface is developed to automatically transfer the data between the analysis and optimization processes respectively. The optimization consists of minimizing the weight of the stiffened panel with design variables being the thickness of the plate and height and width of the stiffener as well as the placement of the stiffeners subjected to buckling and stress constraints under in-plane normal/shear and out-plane pressure loading conditions. / Ph. D.
7

Otimização do posicionamento de sensores e atuadores para o controle com realimentação de saída utilizando critério de desempenho quadrático / Optimal placement of sensors and actuators for the output feedback control using quadratic performance criterion

Cruz Neto, Hélio Jacinto da 02 March 2018 (has links)
Estruturas flexíveis estão sujeitas a excitações desconhecidas que podem causar danos. Um dos possíveis artifícios para lidar com este problema é a teoria de controle de sistemas dinâmicos. Em particular, uma técnica que suscita o interessa para aplicação nesta classe de sistemas é o controle ótimo, devido às suas boas propriedades de resposta e factibilidade, podendo ser aplicado até através de circuitos analógicos. O contratempo desta técnica é a necessidade de um número de sensores igual ao número de estados do sistema, o que para estruturas é inviável. Como uma alternativa, pode se empregar os procedimentos usuais de restrição de realimentação do sinal medido. No entanto, estes casos não consideram o projeto das matrizes de saída e entrada, fator determinante para o controle de vibrações em estruturas. O objetivo deste trabalho é preencher esta lacuna. Inicialmente, são introduzidos alguns conceitos das teorias de controle ótimo, dinâmica estrutural e sobre métodos de discretização em séries. Em seguida, determinam-se as condições necessárias de otimalidade considerando como variáveis de otimização o ganho e as posições dos sensores e atuadores. Determinadas as condições, investigam-se os principais desafios para solução destas equações, dados pela existência de parâmetros que estabilizem o sistema e a dependência do ponto ótimo em relação à condição inicial do sistema. O primeiro é resolvido a partir da especificação do sistema linear para uma forma modal e utilizando funções de controle de Lyapunov, o que adicionalmente proporciona o resultado de que o controle colocalizado é um controle ótimo. Para o segundo são propostas duas soluções, sendo uma utilizada para determinar as posições dos atuadores para projetar um controle LQR com desempenho satisfatório, e a outra para determinar os ganhos e posições dos sensores de modo a obter um controle com realimentação de saída com desempenho próximo ao LQR projetado. Os resultados obtidos a partir da aplicação da metodologia desenvolvida em exemplos da dinâmica estrutural revelaram um desempenho notável. Mesmo para uma razão pequena entre o número de sensores pelo número de estados obteve-se um desempenho equivalente ao LQR, exibindo também propriedades robustez consideráveis em relação às variáveis de otimização. Conclui-se que a metodologia desenvolvida é uma boa alternativa para as técnicas de controle LQR e LQG. / Flexible structures are subject to unknown excitations that may cause damage. One of the possible artifices to deal with this problem is the control theory of dynamical systems. In particular, a technique that raises the interest for application in this class of systems is the optimal control, due to its good properties of response and feasibility, as it can be applied even through analog circuits. A drawback of this technique is the need for a number of sensors equal to the number of states, which for structures is impracticable. As an alternative, the usual procedures of using only measured signals for feedback can be employed. However, these cases do not consider the design of the input and output matrices, a determining factor for vibration control in structures. The purpose of this paper is to fill this gap. Initially, some concepts of the theories of optimal control, structural dynamics and series discretization methods are introduced. Then, the optimality conditions are determined considering the gain and locations of sensors and actuators as the optimization variables. Given these conditions, we investigate the main challenges to solve these equations, given by the existence of parameters that stabilize the system and the dependence of the optimum point in relation to the initial condition of the system. The first one is solved from the specification of the linear system to a modal form and using Lyapunov control functions, which additionally provides the result that the collocated control is an optimal control. For the second two solutions are proposed, one being used to determine the positions of the actuators to design a LQR control with satisfactory performance, and the other to determine the gains and positions of the sensors in order to obtain an output feedback control with close performance to the designed LQR. The results obtained from the application of the methodology developed in structural dynamics examples revealed a remarkable performance. Even for a small ratio between the number of sensors by the number of states a performance equivalent to the LQR was obtained, also exhibiting considerable robustness properties in relation to the optimization variables. It is concluded that the developed methodology is a good alternative for LQR and LQG control techniques.
8

Otimização do posicionamento de sensores e atuadores para o controle com realimentação de saída utilizando critério de desempenho quadrático / Optimal placement of sensors and actuators for the output feedback control using quadratic performance criterion

Hélio Jacinto da Cruz Neto 02 March 2018 (has links)
Estruturas flexíveis estão sujeitas a excitações desconhecidas que podem causar danos. Um dos possíveis artifícios para lidar com este problema é a teoria de controle de sistemas dinâmicos. Em particular, uma técnica que suscita o interessa para aplicação nesta classe de sistemas é o controle ótimo, devido às suas boas propriedades de resposta e factibilidade, podendo ser aplicado até através de circuitos analógicos. O contratempo desta técnica é a necessidade de um número de sensores igual ao número de estados do sistema, o que para estruturas é inviável. Como uma alternativa, pode se empregar os procedimentos usuais de restrição de realimentação do sinal medido. No entanto, estes casos não consideram o projeto das matrizes de saída e entrada, fator determinante para o controle de vibrações em estruturas. O objetivo deste trabalho é preencher esta lacuna. Inicialmente, são introduzidos alguns conceitos das teorias de controle ótimo, dinâmica estrutural e sobre métodos de discretização em séries. Em seguida, determinam-se as condições necessárias de otimalidade considerando como variáveis de otimização o ganho e as posições dos sensores e atuadores. Determinadas as condições, investigam-se os principais desafios para solução destas equações, dados pela existência de parâmetros que estabilizem o sistema e a dependência do ponto ótimo em relação à condição inicial do sistema. O primeiro é resolvido a partir da especificação do sistema linear para uma forma modal e utilizando funções de controle de Lyapunov, o que adicionalmente proporciona o resultado de que o controle colocalizado é um controle ótimo. Para o segundo são propostas duas soluções, sendo uma utilizada para determinar as posições dos atuadores para projetar um controle LQR com desempenho satisfatório, e a outra para determinar os ganhos e posições dos sensores de modo a obter um controle com realimentação de saída com desempenho próximo ao LQR projetado. Os resultados obtidos a partir da aplicação da metodologia desenvolvida em exemplos da dinâmica estrutural revelaram um desempenho notável. Mesmo para uma razão pequena entre o número de sensores pelo número de estados obteve-se um desempenho equivalente ao LQR, exibindo também propriedades robustez consideráveis em relação às variáveis de otimização. Conclui-se que a metodologia desenvolvida é uma boa alternativa para as técnicas de controle LQR e LQG. / Flexible structures are subject to unknown excitations that may cause damage. One of the possible artifices to deal with this problem is the control theory of dynamical systems. In particular, a technique that raises the interest for application in this class of systems is the optimal control, due to its good properties of response and feasibility, as it can be applied even through analog circuits. A drawback of this technique is the need for a number of sensors equal to the number of states, which for structures is impracticable. As an alternative, the usual procedures of using only measured signals for feedback can be employed. However, these cases do not consider the design of the input and output matrices, a determining factor for vibration control in structures. The purpose of this paper is to fill this gap. Initially, some concepts of the theories of optimal control, structural dynamics and series discretization methods are introduced. Then, the optimality conditions are determined considering the gain and locations of sensors and actuators as the optimization variables. Given these conditions, we investigate the main challenges to solve these equations, given by the existence of parameters that stabilize the system and the dependence of the optimum point in relation to the initial condition of the system. The first one is solved from the specification of the linear system to a modal form and using Lyapunov control functions, which additionally provides the result that the collocated control is an optimal control. For the second two solutions are proposed, one being used to determine the positions of the actuators to design a LQR control with satisfactory performance, and the other to determine the gains and positions of the sensors in order to obtain an output feedback control with close performance to the designed LQR. The results obtained from the application of the methodology developed in structural dynamics examples revealed a remarkable performance. Even for a small ratio between the number of sensors by the number of states a performance equivalent to the LQR was obtained, also exhibiting considerable robustness properties in relation to the optimization variables. It is concluded that the developed methodology is a good alternative for LQR and LQG control techniques.
9

Modèles de composants passifs et couplage électromagnétique pour filtres HF de puissance : optimisation du placement / Modeling of passive components and electromagnetic coupling for HF filter : placement optimization

Zhou, An 18 April 2013 (has links)
Les filtres CEM sont largement utilisés dans les systèmes électroniques de puissance pour la suppression des interférences électromagnétiques. Ils sont en général composés d'une succession de condensateurs et de selfs. En haute fréquence, on est amené à compléter le modèle des composants par des éléments parasites. Ce travail de thèse est consacré à l'étude de l'influence du couplage inter composants sur la performance du filtre CEM. Une étude mathématique a été réalisée sur un filtre LC de type Γ. Cette dernière nous a permis de déduire qu'un meilleur comportement du filtre est obtenu quand le couplage magnétique inter-composants annule l'inductance parasite du condensateur (ESL=M). Pour atteindre cet objectif, une méthodologie permettant d'optimiser les emplacements des composants a été développée en se basant sur des modèles 3D simplifiés des composants du filtre. Dans ce travail de thèse, un condensateur film métallisé est présenté par un modèle 3D constitue d'un volume unique de conducteur. Les bobines avec ferrite sont modélisées en 3D en prenant en compte les propriétés physiques et géométriques. Ces modèles de condensateurs et de bobines ont été étudiés dans le cas de plusieurs configurations pour différents positionnements des composants. Les résultats obtenus ont montré leurs capacités de prédire à la fois les paramètres intrinsèques (Inductance parasite ESL pour le condensateur, Inductance L pour la bobine) et l'inductance mutuelle M inter-composants. Finalement, la méthodologie d'optimisation a été validée expérimentalement sur un filtre CEM de type Γ (condensateur film et bobine bâtonnet avec ferrite) intégré dans un moteur d'essuie-glace / EMC filters are widely used in power electronic systems for electromagnetic interference suppression. They usually consist of a series of capacitors and inductors. At high frequencies, it is necessary to complete the model of component with parasitic elements. This work is devoted to the study of the influence of inter-component coupling on the performance of the EMC filter. A mathematical study was performed on an LC filter in type Γ. The latter allowed us to deduce a better behavior of the filter can be obtained when the magnetic coupling inter-component cancels the parasitic inductance of the capacitor (ESL = M). To achieve this goal, a methodology to optimize the locations of components has been developed based on their 3D models simplified. In this thesis, a metalized film capacitor is presented by a 3D model constituting a single volume conductor. The inductor with ferrite is modeled by taking into account the physical and geometrical properties. These models of capacitors and inductors have been studied in several configurations for different positions of the components. The results have shown their ability to predict both the intrinsic parameters (parasitic inductance ESL for the capacitor, inductance L for the inductor) and mutual inductance M inter-components. Finally, the optimization method was validated experimentally with an EMC filter type Γ (film capacitor and ferrite-rod inductor) built in a wiper motor
10

Géolocalisation à l'intérieur d'un bâtiment pour terminaux mobiles / Indoor positioning using mobile terminals

Kammoun, Soufien 29 June 2016 (has links)
Force est de constater aujourd’hui que la localisation d’un bien ou d’une personne est devenue une nécessité. Plusieurs solutions existent en extérieur, largement dominées par le système GPS. Pour la localisation en intérieur, la précision se dégrade en raison des trajets multiples et de l’atténuation des signaux traversant les murs. Cette thèse se focalise sur la problématique de localisation à l’intérieur d’un bâtiment en utilisant les technologies présentes dans des smartphones et des tablettes fonctionnant sous le système d’exploitation Android disponible dans divers marques. Les systèmes de localisation en intérieur exploitent différents supports tels que les ondes radio-fréquence (RF) ou les capteurs inertiels embarqués dans un terminal. Dans le cas RF, ils utilisent des points références dont la répartition sur la zone couverte influe sur la performance en localisation. Une première contribution est un développement d’algorithme d’optimisation d’emplacement des balises basé sur le recuit simulé. Les signaux extraits des capteurs inertiels sont utilisés par la navigation pédestre à l’estime (NPE) pour déterminer le trajet effectué depuis une position connue. Ils dépendent de la sensibilité des paramètres intrinsèques de ces capteurs et ils sont corrompus par des bruits. Dans le cas NPE, une calibration permet d’obtenir des données exploitables pour l’estimation de l’orientation de déplacement et pour la détection des pas. Cette orientation est supposée identique à celle du terminal mais il y a un intérêt à prendre en compte le biais d’orientation entre les deux. Une autre contribution est une proposition d’algorithme de détection des pas exploitant la logique floue. / Nowadays, the localization of a device or person has become mandatory. If many solutions exist for outdoor environment, as the GPS one, any fails to provide an expected accuracy for indoor environment because of the multipath phenomena and the attenuation of signals crossing walls. This thesis focuses on the localization problem in buildings by using existed technologies in smartphones and tablets managed by Android OS - which is available in several brands. The indoor localization systems are using different technologies like radio-frequency (RF) waves or inertial sensors embedded in handsets. In the RF case, they use anchors or beacons, whose position impacts the localization performance for the covered zone. Our first contribution was the placement optimization of beacons using simulated annealing algorithm. Next to improve the localization performance, the inertial sensors, embedded in smartphones, have been used. The pedestrian dead reckoning (PDR) algorithm employs the extracted signals from the inertial sensors and determines the path done since a known position. These extracted signals are affected by the intrinsic parameters of sensors and they are corrupted by noises. The calibration of the sensors is compulsory to obtain data that could be used to estimate the walking orientation and the number of done steps by the user. It is often supposed that the walking orientation is the same as the smartphone orientation; however it might be interesting to consider the bias between these two orientations. A last contribution, in this thesis, consists on a proposed algorithm for step detection using fuzzy logic.

Page generated in 0.148 seconds