Spelling suggestions: "subject:"plasmon"" "subject:"splasmon""
101 |
Electron Energy Loss Spectroscopy of Metallic Nanostructures and Carbon NanotubesRossouw, David 01 September 2014 (has links)
<p>In this thesis, a modern transmission electron microscope is used to perform high-resolution electron energy loss studies of metallic nanostructures and carbon nanotubes.</p> <p>The remarkable optical properties of metallic nanostructures arise from the excita- tion of surface plasmons. With improved instrumentation, surface plasmon resonances are imaged in a variety of nanostructures, enabling a greater understanding of their behaviour in nanoscale systems. It is shown that surface plasmons set up multiple high order resonances in silver nanorods, and they freely propagate around sharp corners in silver nanowires. It is also demonstrated that silver nanorice structures resonate in a similar manner to nanorods, despite the high density of stacking faults in the structure. Finally, a complementary structural pair is found to resonate in a complementary fashion, in agreement with Babinet’s principle.</p> <p>Carbon nanotubes exhibit unique physicochemical properties that have led to their use in a variety of novel materials science applications. Despite rapid progress in the theoretical and experimental investigation of carbon nanotubes, techniques capable of studying the structural and electronic properties of individual tubes are limited. Here, it is demonstrated that the spectral signature of carbon can be used to identify the electronic character of individual single-walled carbon nanotubes. In addition, a new technique is used to map bonding anisotropy in a multi-walled carbon nanotube.</p> <p>Also presented in this thesis is the design and construction of a unique laser-TEM system. Early results from the system include in-situ measurements of laser-induced structural and electronic distortions in individual carbon nanotubes.</p> / Doctor of Philosophy (PhD)
|
102 |
Plasmon Directed Chemical Reactivity and Nanoparticle Self-AssemblySee, Erich M. 25 April 2017 (has links)
Nanotechnology has advanced to the point that nanoparticles can now be fabricated in a broad variety of shapes from a wide range of materials, each with their own properties and uses. As the list of manufacturable particles continues to grow, a new frontier presents itself: assembling these existing nanoparticles into more complicated nanoscale structures. The primary objective of this thesis is to demonstrate and characterize one such method of nanoscale construction, the plasmonically directed self-assembly of gold nanospheres onto both silver nanospheroids and gold nanorods. At the heart of this research is a the use of a photocleavable ligand (1-(6-Nitrobenzo[d][1,3]dioxol-5-yl)ethyl(4-(1,2-Dithiolan-3-yl)butyl) carbamate), which is capable of forming a photoreactive self-assembly monolayer (SAM) on gold and silver surfaces. After photoactivation, this SAM becomes positively charged at low pH, allowing it to electrostatically bind with negatively charged gold nanospheres (or other negatively charged nanoparticles). In this thesis, I describe both a secondary photoreaction that this ligand is capable post-photocleavage, which removes the ligand's ability to bind to negatively charged gold nanospheres, allowing for, among other assembly methods, reverse photopatterning. I further show that this photocleavable ligand can be used in conjunction with gold nanospheres to create aligned, metal structures on silver nanospheroid surface by exposure to linearly polarized UV light. Similarly, I also demonstrate how the ligand can be used to preferentially bind gold nanospheres to the ends of gold nanorods with the use of ultrafast femtosecond pulsed 750 nm laser light, making use of multi-photon absorption. Both methods of self-assembly, as well as the secondary photoreaction, are dependent on the plasmonics of the metal nanoparticles. This thesis also goes into the backgrounds of plasmonics, plasmonically mediated catalysis, self-assembly, and photocleavable chemicals. / Ph. D. / Nanotechnology has advanced to the point that nanoparticles can now be fabricated in a broad variety of shapes from a wide range of materials, each with their own properties and uses. As the list of manufacturable particles continues to grow, a new frontier presents itself: assembling these existing nanoparticles into more complicated nanoscale structures. The ability to build and design such structures further advances the use of nanotechnology for medical and industrial applications. In this thesis, I describe and demonstrate a method of nanoparticle self-assembly developed by our group which uses the unique optical properties of metallic nanoparticles in conjunction with a light-activated binding chemical to control and direct the assembly of gold nanoparticles onto a silver nanosphere or gold nanorod base. The preliminary results for both of these techniques are highly promising, and I describe them in detail. I furthermore explore a secondary light-driven reaction our light-activated chemical is capable of. This secondary reaction can prevent particle binding, broadening the applications and techniques of the lightactivated binding chemical.
|
103 |
Les modes de plasmon sur film métallique ondulé, appliqués aux documents de sécurité / Plasmon modes applied to the Optical Document SecuritySauvage-Vincent, Jean 22 October 2013 (has links)
La présente thèse se propose de résoudre les problématiques de facilités de contrôle optique d’un document de sécurité pourvu d’un hologramme par l’application d’une structure optique complexe mettant en œuvre les modes de plasmons de surface. Dans une partie dédiée nous démontrerons l’adaptation de la transmission extraordinaire plasmonique à travers une couche métallique continue ; un concept de sécurité sera aussi présenté permettant l’observation et l’authentification de l’effet transmissif. Dans une autre partie nous présentons un effet de réflexion plasmonique extraordinaire. En lieu et place des phénomènes classiques d’absorption sur une couche métallique épaisse, nous présentons un phénomène que nous avons nommé balance énergétique à médiation plasmonique. Cet effet est bien évidemment mis en évidence à travers un concept final adapté au domaine de l’optique de sécurité / The aim of this PhD thesis is to find optical solutions based on plasmon modes excitation for the control and the authentication of optical security documents. We developed complex optical structures for the excitation of plasmon modes in order to create “easy to catch” and “easy to check" effect. In the first part of the thesis we demonstrated the extraordinary optical transmission through a thin corrugated metallic layer using the Long range plasmon mode; a concept of optical document security is demonstrated. In a second part of the thesis we developed an unusual plasmon effect in reflexion. Instead of having absorption of the spectrum due to the plasmon excitation, we have reflection of the spectrum due to the plasmon excitation using higher diffracted orders. We call this effect "reflection switch" mediated by plasmon. At the end we developed the concept to an optical security document
|
104 |
Enhancement of Light Emission from Metal Nanoparticles Embedded Graphene OxideKarna, Sanjay K. 05 1900 (has links)
A fully oxidized state of graphene behaves as a pure insulating while a pristine graphene behaves as a pure conducting. The in-between oxide state in graphene which is the controlled state of oxide behaves as a semiconducting. This is the key condition for tuning optical band gap for the better light emitting property. The controlling method of oxide in graphene structure is known as reduction which is the mixed state of sp2 and sp3 hybrid state in graphene structure. sp2 hybridized domains correspond to pure carbon-carbon bond i.e. pristine graphene while sp3 hybridized domains correspond to the oxide bond with carbon i.e. defect in graphene structure. This is the uniqueness of the graphene-base material. Graphene is a gapless material i.e. having no bandgap energy and this property prevents it from switching device applications and also from the optoelectronic devices applications. The main challenge for this material is to tune as a semiconducting which can open the optical characteristics and emit light of desired color. There may be several possibilities for the modification of graphene-base material that can tune a band gap. One way is to find semiconducting property by doping the defects into pristine graphene structure. Other way is oxides functional groups in graphene structure behaves as defects. The physical properties of graphene depend on the amount of oxides present in graphene structure. So if there are more oxides in graphene structure then this material behaves as a insulating. By any means if it can be reduced then oxides amount to achieve specific proportion of sp2 and sp3 that can emit light of desired color. Further, after achieving light emission from graphene base material, there is more possibility for the study of non-linear optical property. In this work, plasmonic effect in graphene oxide has been focused. Mainly there are two kinds of plasmon effects have been studied, one is long range (surface) and short range (localized) plasmon. For long range plasmon gold thin film was deposited on partially reduced graphene oxide and for short range plasmon silver nanoparticles have used. Results show that there are 10-fold enhancement in light emission from partial graphene oxide coated with gold thin film while 4-fold enhancement from reduced graphene oxide solution with silver nanoparticles. Chemical method and photocatalytic method have been employed for the reduction of graphene oxide for the study of surface plasmon and localized plasmon. For the characterization UV-Vis spectrometer for absorption, spectrofluorophotometer for fluorescent emission, Raman spectrometer for material characterization, photoluminescence and time resolved photoluminescence have been utilized. Silver and gold nanoparticles are spherical of average size of 80 nm and 40 nm have been used as plasmons.
|
105 |
Simulation of a plasmonic nanowire waveguideMalcolm, Nathan Patrick 03 September 2009 (has links)
In this work a Finite Difference Time Domain (FDTD) simulation is employed to explore local field enhancement, plasmonic coupling, and charge distribution patterns. This 3D simulation calculates the magnetic and electric field components in a large matrix of Yee cells using Maxwell’s equations. An absorbing boundary condition is included to eliminate reflection back into the simulation chamber, and a sample system of cells is checked for convergence. In the specific simulations considered here, a laser pulse of single wavelength is incident on a silicon substrate, travels through an embedded ZnO nanowire (NW) waveguide only (due to an Ag filter), then incites plasmonic coupling at the gap between an Au nanoparticle tip and an Au substrate, an Au nanoparticle (NP), or a trio of Au nanoparticles incident on an angled Si substrate. The angle between the axis of the NW and the normal of the substrate is varied from 0-60°. The NP perpendicular deflection with respect to the NW axis is also varied from -115 - 75 nm. The enhancement patterns reveal superior signal to noise ratio compared to Near Field Scanning Optical Microscopy (NSOM), three times smaller than the NP diameter 100 nm, as well as resolution and spot size of less than 50 nm. This method of Apertureless NSOM (ANSOM) using a NW waveguide grown on a transparent microcantilever therefore shows promise for imaging of single molecules incident on a substrate and NP-labeled cell membrane. / text
|
106 |
Coated Nano-particles for Optical Metamaterials and Nano-photonic ApplicationsGordon, Joshua Ari January 2008 (has links)
The optical properties of a concentric nanometer-sized spherical shell comprised of an (active) 3-level gain medium core and a surrounding plasmonic metal shell are investigated. Current research in optical metamaterials has demonstrated that including lossless plasmonic materials to achieve a negative permittivity in a nano-sized coated spherical particle can lead to novel optical properties such as resonant scattering as well as transparency or invisibility. However, in practice, plasmonic materials have high losses at optical frequencies. It will be demonstrated that a properly designed passive optical spherical core impregnated with a gain medium and coated with a concentric spherical plasmonic nano-shell will have a "super resonant" (SR) lasing state. The operating characteristics of this coated nano-particle (CNP) laser have been obtained numerically for a variety of configurations and will be reported here. Once the optical properties of the isolated active CNP inclusion are established, several examples of optical metamaterials using them as inclusions will be presented and analyzed. In particular, the effective material properties of these optical MTMs will be explored using effective medium theories that are applicable to a variety of inclusion configurations. Two-dimensional (2D) mono-layers of these active CNPs, which form metafilms; three-dimensional (3D) periodic arrays of these active CNPs; and 3D random distributions of these active CNPs will be described. The effective permittivities and refractive indexes of these optical MTMs will be compared and contrasted to those of their active CNP inclusions. In addition to the active MTMs, some examples of nano-photonic applications enabled by the unique properties of these inclusions will also be presented. Specifically metamaterial pigments derived from exploiting the high absorption and low scattering properties of the passive CNP particle will be explored for possible use in color display technology as well as the use of the SR lasing state and localized plasmon resonance of the active CNP for nano-sensing applications.
|
107 |
Hybrid Plasmon Waveguides: Theory and ApplicationsAlam, Muhammad 06 December 2012 (has links)
The study and applications of surface plasmon polaritons (SP) – also known as plasmonics – has attracted the interest of a wide range of researchers in various fields such as biology, physics, and engineering. Unfortunately, the large propagation losses of the SP severely limit the usefulness of plasmonics for many practical applications. In this dissertation a new wave guiding mechanism is proposed in order to address the large propagation losses of the plasmonic guides. Possible applications of this guiding scheme are also investigated.
The proposed hybrid plasmonic waveguide (HPWG) consists of a metal layer separated from a high index slab by a low index spacer. A detailed analysis is carried out to clarify the wave guiding mechanism and it is established that the mode guided by the HPWG results from the coupling of a SP mode and a dielectric waveguide mode.
A two dimensional HPWG is proposed and the effects of various parameters on the HPWG performance are analyzed in detail. This structure offers the possibility of integrating plasmonic devices on a silicon platform.
The proposed waveguide supports two different modes: a hybrid TM mode and a conventional TE mode. The hybrid TM mode is concentrated in the low index layer, whereas the conventional TE mode is concentrated in the high index region. This polarization diversity is used to design a TM- and a TE-pass polarizer and a polarization independent coupler on a silicon-on-insulator (SOI) platform. Moreover, the performance of a HPWG bend is investigated and is compared with plasmonic waveguide bends. The proposed devices are very compact and outperform previously reported designs.
The application of HPWG for biosensing is also explored. By utilizing the polarization diversity, the HPWG biosensor can overcome some of the limitations of plasmonic sensors. For example, unlike plasmonic sensors, the HPWG biosensor can remove the interfering bulk and surface effects.
|
108 |
A biophysical study of the G protein coupled receptor neurotensin receptor 1Harding, Peter J. January 2007 (has links)
Neurotensin (NT) is a tridecapeptide neurotransmitter found in the central nervous system and gastrointestinal tract. Neurotensin receptor 1 (NTS1), a high affinity receptor for NT, is a member of the GPCR superfamily and is a putative target for the treatment of conditions such as Schizophrenia, Parkinson’s Disease and drug addiction. Overexpression and purification are typically limiting steps in the high resolution structure determination of GPCRs. In this study, through the optimisation of the E.coli strain used for overexpression of rat NTS1 (NTS1) and the inclusion of phospholipids in the purification buffers to prevent delipidation, an approximate 3-fold improvement in active receptor yield was obtained relative to existing protocols. Preliminary electron microscopy (negative stain and cryo) confirmed a monodisperse receptor population. Purified NTS1 is now being produced at a sufficient level for high resolution structural studies, including 3D crystallisation and further electron microscopy studies. The existing construct for the expression of NTS1 in E.coli, termed NTS1B, was modified to contain a fusion to the genes encoding either the eCFP or eYFP fluorescent proteins. These constructs were used for the E.coli expression of NTS1 tagged with either fluorescent protein at the C-terminus. Tagged receptor was successfully expressed at levels of up to 0.29 ± 0.03 mg per l of culture. Successful purification and proteolytic removal of the MBP and TrxA-His10 fusion partners was achieved whilst retaining both fluorescence and ligand binding capability (K<sub>d</sub> = 0.91 ± 0.17 nM). Purified, fluorescent receptor was reconstituted into brain polar lipid (BPL) liposomes in an active conformation which was both fluorescent and able to bind NT. Experimentation with alternative lipid compositions suggested that specific lipids are required in order to maintain ligand-binding activity. FRET between the eCFP- and eYFP-tagged receptors was observed in reconstituted samples. The FRET efficiency was comparable to that observed in vivo for other GPCRs, including the yeast α-factor receptor, which is believed to be dimeric. This suggests that NTS1 could also be multimeric. In contrast, no FRET was observed in detergent samples. Therefore, a functioning in vitro system has been developed which enables the study of NTS1 multimerisation in lipid bilayers and future studies will attempt to implement single molecule fluorescence techniques. In addition, fluorescent derivatives of NT were successfully synthesised and purified. Radioligand competition assays and fluorescence correlation spectroscopy (FCS) confirmed that the fluorescent peptides bound to purified NTS1 in specific competition with unlabelled NT. Surface plasmon resonance (SPR) was used to confirm the ligand binding activity of purified NTS1. A novel approach was utilised which involved the measurement of the binding of detergent-solubilised NTS1 to immobilised, N-terminally biotinylated NT on the sensor surface. The use of a rigorous control, which consisted of immobilised ‘scrambled sequence’ NT, demonstrated a specific interaction. Analysis of the kinetics revealed a multiphasic interaction with a K<sub>d</sub> in the nanomolar range. In summary, improvements to the expression and purification of NTS1, the generation of fluorescent constructs as useful tools in the study of receptor multimerisation and the optimisation of lipid-reconstitution protocols have opened up several preliminary lines of study which show considerable potential for future research.
|
109 |
Radiative decay and coupling of surface plasmons on metallic nanohole arrays. / 表面等離子體在金屬納米孔陣列的輻射衰減及耦合 / Radiative decay and coupling of surface plasmons on metallic nanohole arrays. / Biao mian deng li zi ti zai jin shu na mi kong zhen lie de fu she shuai jian ji ou heJanuary 2013 (has links)
了解表面等子體和外部環境之間的相互作用對表面等子體應用的開發非常重要。我們的研究集中在表面等子體與遠場的耦合,以及表面等子體模之間的耦合。 / 首先,我們研究由表面等子體模式耦合所產生的射衰變的變化。我們以角分辨反射光譜測同孔大小的納米孔陣上的簡併表面等子體模的衰減。對於每個孔的大小,我們觀察到在發生共振耦合的光譜區,衰減速有很大的改變,顯示出暗模和模的形成。耦合模很好地解釋衰變的變化。推導出的耦合常隨著孔直徑的增加而增加。我們也對耦合模一些有趣的特性及衰減變化的微觀起源進探討。 / 第二,我們以偏振分辨反射光譜從二維屬陣射散射。我們發現,反射光譜遵循的法模型可以由耦合模和瓊斯矩陣演算推導出。通過用正交方向的偏光器和分析器,反射光譜上的谷翻轉成峰,從以能夠測定出射散射效。我們發現,射散射效與波長和孔直徑的依賴關係和單孔的瑞散射相符合。 / 最後,我們開發一個新的方法,以偏振分辨光譜在實驗中測射衰變。這方法的有效性通過時域有限差分計算得到證明。我們還將此方法應用在實驗據上作為示範。 / Understanding the interaction between surface plasmon and outer environment is crucial in development of plasmonic applications. Our study is focused on the coupling between surface plasmons and far field, and also the coupling between surface plasmon modes. / First, we studied the change in radiative decay rate due to coupling of degenerate surface plasmon modes. We measured the decay rates of two degenerate surface plasmon modes in Au nanohole arrays with different hole sizes by angle-resolved reflectivity spectroscopy. For each hole size, at the spectral region where resonant coupling occurs, we observed a large modification in decay rates, leading to the formation of dark and bright modes. The change in decay rates is well explained by coupled-mode theory. The deduced coupling constant is found to increase with increasing hole diameter. Interesting properties of the coupled modes and microscopic origin of the change in decay rate is also discussed. / Second, we measured the radiative scattering from two-dimensional metallic arrays by using polarization-resolved reflectivity spectroscopy. We found that the reflectivity spectra follow the Fano-like model which can be derived from coupled-mode theory and Jones matrix calculus. By orthogonally orienting the incident polarizer and the detection analyzer, reflectivity dips flip into peaks and the radiative scattering efficiency can be determined accordingly. The dependence of total radiative scattering efficiency on wavelength and hole diameter is found to agree well with Rayleigh scattering by single hole. / Finally, we developed a new method to measure radiative decay rates experimentally by polarization-resolved reflectivity spectroscopy. The validity of this method is proved by finite-difference time-domain simulation. We also applied this method on experimental data as a demonstration. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Lo, Hau Yung = 表面等離子體在金屬納米孔陣列的輻射衰減及耦合 / 羅孝勇. / "December 2012." / Thesis (M.Phil.)--Chinese University of Hong Kong, 2013. / Includes bibliographical references (leaves 88-92). / Abstracts also in Chinese. / Lo, Hau Yung = Biao mian deng li zi ti zai jin shu na mi kong zhen lie de fu she shuai jian ji ou he / Luo Xiaoyong. / Chapter 1 --- Introduction --- p.1 / Chapter 2 --- Basic Theory and Techniques --- p.3 / Chapter 2.1 --- Macroscopic Maxwell Equations and Boundary Conditions --- p.3 / Chapter 2.2 --- Symmetries and Band Structure --- p.4 / Chapter 2.3 --- Coupled-mode Theory --- p.10 / Chapter 2.4 --- Finite-difference Time-domain Simulation --- p.12 / Chapter 2.5 --- Preparation of Metallic Nano-hole Arrays --- p.14 / Chapter 3 --- Fundamentals of Surface Plasmons on Metallic Nanohole Array --- p.18 / Chapter 3.1 --- Confinement and Propagation Nature of SPs --- p.18 / Chapter 3.2 --- Skin Depth and Propagation Length --- p.19 / Chapter 3.3 --- Dispersion Relation and Phase-matching Conditions --- p.21 / Chapter 3.4 --- Measurement of Band Structure: Angle-resolved Reflectivity Mapping --- p.23 / Chapter 3.5 --- Red Shift of Band Structure --- p.26 / Chapter 3.6 --- Comparison of Two Presentations of Band Structure: "ω against k" versus "λ against θ" --- p.28 / Chapter 3.7 --- Resonance Peak Shape: FanoModel and Wood's Anomalus --- p.30 / Chapter 3.8 --- Resonance Peak Shape: "Fano-like" Model --- p.34 / Chapter 3.9 --- Appendix A: Derivation of Eq(3.1) --- p.36 / Chapter 4 --- Decay Rates Modification though Coupling of Degenerate Surface Plasmon modes --- p.40 / Chapter 4.1 --- Introduction --- p.40 / Chapter 4.2 --- Measurements of Degenerate Surface Plasmon Modes --- p.42 / Chapter 4.3 --- Decay rates of Coupled Modes --- p.45 / Chapter 4.4 --- Hole Diameter Dependence of Coupling Constants --- p.47 / Chapter 4.5 --- Understanding the S-polarized Surface Plasmon Modes --- p.50 / Chapter 4.6 --- TE-like Surface Plasmon Modes --- p.53 / Chapter 4.7 --- Microscopic Origin of the Modification in Decay Rate --- p.54 / Chapter 4.8 --- Summary --- p.60 / Chapter 5 --- Direct Measurement of Radiative Scattering of Surface Plasmon Resonance from Metallic Arrays by Polarization-resolved Reflectivity Spectroscopy --- p.61 / Chapter 5.1 --- Introduction --- p.61 / Chapter 5.2 --- Theory of Direct Measurement of Radiative Scattering --- p.62 / Chapter 5.3 --- Comparison with Experiment --- p.65 / Chapter 5.4 --- Comparison with Rayleigh Scattering Model --- p.71 / Chapter 5.5 --- Summary --- p.74 / Chapter 6 --- A Method of Obtaining Radiative Decay Rates From Experiment --- p.76 / Chapter 6.1 --- Introduction --- p.76 / Chapter 6.2 --- Method --- p.77 / Chapter 6.3 --- Prove of Validity --- p.78 / Chapter 6.4 --- Experimental Demonstration --- p.82 / Chapter 6.5 --- Summary --- p.85 / Chapter 7 --- Conclusion --- p.86 / Chapter 8 --- Bibliography --- p.88 / Chapter 9 --- Curriculum Vitae --- p.93
|
110 |
Phase detection techniques for surface plasmon resonance sensors. / CUHK electronic theses & dissertations collectionJanuary 2011 (has links)
In addition, this project also investigated schemes that might enhance the phase change in the SPR sensor. The "double-pass" and "multi-pass" approaches through which the SPR phase can be amplified upon hitting the sensor surface more than once, have been experimentally studied and successfully demonstrated. A double-pass method can immediately offer two times of phase change as compared to the singlepass one. Accordingly the multi-pass scheme offers a higher then two times phase enhancement. Such improvement in phase detection is extremely important for biosensing applications involving small molecules, small proteins, DNA and etc. Another approach for detection performance improvement is to incorporate a multilayer configuration for the biosensing surface. In order to improve the dynamic measurement response, we proposed to use a multiple resonant angle measurement approach in conjunction with the single-beam self-referenced phase-sensitive SPR configuration. With the use of many multiple incident angles, the system provided sensing capability that covers a refractive index (RI) 1.33 to over 1.38. A 128-element array detector was employed to measure the resonance phase change over the range of the incident angles to ensure a reasonably continuous phase response curves achievable from the system. / This project is concerned with the development and optimization of optical sensors based on measuring the phase change of surface plasmon resonance (SPR) effect. The phase sensitive SPR technique provides very high sensitivity performance due to the fact that an abrupt phase jump occurs near the resonance dip, thus resulting in large phase shift with very small change in the sensing medium. A range of different measurement techniques for enhancing system sensitivity have been investigated. Moreover we also studied the phase change characteristics around the SPR dip region by means of simulation in order to explore various approaches for achieving further improvement in sensitivity and as well as wide dynamic range. Since SPR is caused by electron charge density oscillations in metal surface in which the wave momentum required for plasmon wave excitation is always larger than that for free space, an inverted prism-coupling scheme (prism-metal-dielectric) is commonly used and this configuration was also employed in our experimental setup, particularly for the SPR biosensor based on differential phase Mach-Zehnder interferometer configuration. This design primarily operates by taking advantage of the fact that SPR only affects the p-polarization while leaving the s-polarization unchanged. This means that differential phase measurement between the p- and s- polarizations will result in SPR signals that are completely free from any disturbances that are common to both channels. Experimental results obtained from glycerin/water mixtures indicate that the sensitivity limit of our scheme is 5.48 x 10 -8 refractive index unit per 0.01° phase change. To our knowledge, this is a significant improvement over previously obtained results when gold is used as the sensor surface. While acknowledging that accurate optical alignment is a crucial requirement for the Mach-Zehnder interferometer and it is often not easy to maintain high degree alignment accuracies in practical situations, we have developed a versatile and low cost single-beam self-referenced phase-sensitive surface SPR sensing system. The system exhibits a root-mean-square phase fluctuation of +/-0.0028° over a period of 45 minutes, i.e. a resolution of +/-5.2x10 -9 refractive index units. The enhanced performance has been achieved through the incorporation of three design elements: (i) a true single-beam configuration enabling complete self-referencing so that only the phase change associated with SPR gets detected; (ii) a differential measurement scheme to eliminate spurious signals not related to the sensor response; (iii) elimination of retardation drifts by incorporating temperature stabilization in the liquid crystal phase modulator. Our design should bring the detection sensitivity of non-labeling SPR biosensing closer to that achievable by conventional florescence-based techniques. / Wu, Shu Yuen. / Source: Dissertation Abstracts International, Volume: 73-06, Section: B, page: . / Thesis (Ph.D.)--Chinese University of Hong Kong, 2011. / Includes bibliographical references (leaves 132-147). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [201-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese.
|
Page generated in 0.0365 seconds