Spelling suggestions: "subject:"plasmonics"" "subject:"plasmonicas""
221 |
Zesílení signálu laserem buzeného plazmatu využitím nanočástic / Enhancement of laser-induced plasma signal using nanoparticlesSalajková, Zita January 2021 (has links)
Analytické metody LIBS a LA-IPC-MS založené na Laserové Ablaci (LA) nabízejí možnost rychlé chemické analýzy přímo z povrchu vzorku. Nedávno bylo ukázáno, že interakce světla s nanočásticemi může být využita pro zlepšení analytických schopností těchto metod. Při interakci nanočástic s laserovým paprskem dochází k zesílení elektromagnetického pole v jejich blízkém okolí. Pokud jsou nanočástice přítomny na povrchu vzorku analyzovaném některou z metod založenou na LA, zesílené pole vytvořené interakcí laseru s částicemi může pozměnit průběh LA, a tak ovlivnit vlastnosti laserem indukovaného plazmatu. Bylo zjištěno, že použití nanočástic může snížit práh ablace, zesílit signál a změnit vlastnosti aerosolu. Nanočásticemi zesílená LIBS (NELIBS) našla své využití tam, kde použití konvenční LIBS je problematické, a to například při analýze vzorků, kdy je jejich poškození nežádoucí nebo u analýzy roztoků mikrolitrových objemů s limity detekce nižšími než ppm. Tato dizertační práce předkládá podrobný popis jevů doprovázejících nanočásticemi zesílenou LA, založený na rozsáhlé experimentální práci a fyzikální teorii. Na základě pochopení základních principů byly vyvinuty dvě nové aplikace. Nejprve, byla NELIBS použita pro detekci kovových iontů v řetězcích amyloidů, pokročilého bio-materiálu určeného pro čištění vody. Dále byla NELIBS využita jako nová metoda pro monitorování proteinové korony vytvořené kolem nanočástic, čímž tato aplikace rozšířila klasické použití NELIBS za hranice prvkové analýzy.
|
222 |
Advanced Scanning Probe Techniques for the Study of Polymer SurfacesAgapov, Rebecca L. 04 December 2012 (has links)
No description available.
|
223 |
Liquid Crystal Flat Optical Elements Enabled by Molecular Photopatterning with Plasmonic MetamasksYu, Hao 26 July 2020 (has links)
No description available.
|
224 |
Nanofabrication Techniques for NanophotonicsYavuzcetin, Ozgur 01 September 2009 (has links)
This thesis reports the fabrication of nanophotonic structures by using electron beam lithography and using pattern transfer via self assembly with the aid of block copolymers. A theoretical and experimental basis was developed for fabricating anti-reflective coatings using block-copolymer pattern transfer. Block-copolymers were also used to fabricate plasmonic pattern arrays which form gold dots on glass surface. Electron-beam lithography was utilized to fabricate holey plasmonic structures from gold and silver films. Electron-beam exposure was used in block-copolymer lithography in selected regions. The exposure effects were studied for both thin and thick block-copolymer films. Reactive and ion beam etching techniques were used and optimized to fabricate those structures. This research required a great deal of development of new fabrication methods and key information is included in the body of the thesis.
|
225 |
Theoretical and Computational Study of Optical Properties of Complex Plasmonic StructuresKhosravi Khorashad, Larousse January 2017 (has links)
No description available.
|
226 |
Characterization and Modelling of Laser Micro-Machined Metallic Terahertz Wire WaveguidesGanti, Satya Rama Naga Lakshmi 14 September 2012 (has links)
No description available.
|
227 |
Mid-IR Plasmonics, Cavity Coupled Excitations, and IR Spectra of Individual Airborne Particulate MatterLuthra, Antriksh 08 August 2017 (has links)
No description available.
|
228 |
Plasmonic Resonances for Spectroscopy Applications using 3D Finite-Difference Time-Domain ModelsRavi, Aruna Subramanian 08 August 2017 (has links)
No description available.
|
229 |
Graphene-based nanocomposites for electronics and photocatalysisChalangar, Ebrahim January 2019 (has links)
The development of future electronics depends on the availability of suitable functional materials. Printed electronics, for example, relies on access to highly conductive, inexpensive and printable materials, while strong light absorption and low carrier recombination rates are demanded in photocatalysis industry. Despite all efforts to develop new materials, it still remains a challenge to have all the desirable aspects in a single material. One possible route towards novel functional materials, with improved and unprecedented physical properties, is to form composites of different selected materials. In this work, we report on hydrothermal growth and characterization of graphene/zinc oxide (GR/ZnO) nanocomposites, suited for electronics and photocatalysis application. For conductive purposes, highly Al-doped ZnO nanorods grown on graphene nanoplates (GNPs) prevent the GNPs from agglomerating and promote conductive paths between the GNPs. The effect of the ZnO nanorod morphology and GR dispersity on the nanocomposite conductivity and GR/ZnO nanorod bonding strength were investigated by conductivity measurements and optical spectroscopy. The inspected samples show that growth in high pH solutions promotes a better graphene dispersity, higher doping and enhanced bonding between the GNPs and the ZnO nanorods. Growth in low pH solutions yield samples characterized by a higher conductivity and a reduced number of surface defects. In addition, different GR/ZnO nanocomposites, decorated with plasmonic silver iodide (AgI) nanoparticles, were synthesized and analyzed for solar-driven photocatalysis. The addition of Ag/AgI generates a strong surface plasmon resonance effect involving metallic Ag0, which redshifts the optical absorption maximum into the visible light region enhancing the photocatalytic performance under solar irradiation. A wide range of characterization techniques including, electron microscopy, photoelectron spectroscopy and x-ray diffraction confirm a successful formation of photocatalysts. Our findings show that the novel proposed GR-based nanocomposites can lead to further development of efficient photocatalyst materials with applications in removal of organic pollutants, or for fabrication of large volumes of inexpensive porous conjugated GR-semiconductor composites.
|
230 |
Surface-Plasmon-Polariton-Waveguide Superluminescent Diode: Design, Modeling and SimulationRanjbaran, Mehdi 04 1900 (has links)
<p>Since the inception of integrated electronic circuits there has been a trend of miniaturizing as many electronic, optical and even mechanical circuits and systems as possible. For optical applications this naturally led to the invention of semiconductor optical sources such as the laser diode (LD) and the light emitting diode (LED). A third device, the superluminescent diode was later invented to offer an output with a power similar to that of an LD and spectral width similar to that of an LED. However, there is usually a trade off between the output power and spectral width of the generated beam. The main challenge in the development of SLD is, therefore, finding ways to mitigate the power-spectral linewidth trade off.</p> <p>Previous work has two major directions. In the first one the goal is to eliminate facet reflections thus preventing lasing from happening. The detrimental effect of lasing is that even before it starts the spectral width quickly narrows down. In the second research direction the goal is to make the material gain spectrum wider by playing with different parameters of quantum well active regions.</p> <p>This research work explores yet another way of broadening output spectrum of SLD while allowing the power to increase at the same time. The surface-plasmon waveguide (SPWG) has been proposed to replace the dielectric waveguide, for the first time. A novel SPWG structure is introduced and designed to optimize the device performance in terms of the output power, spectral width and their product known as the power-linewidth product. The effect of different parameters of the new structure on the output light is investigated and attention is given to the high power, high spectral width and high power-linewidth product regimes.</p> / Doctor of Philosophy (PhD)
|
Page generated in 0.0323 seconds