Spelling suggestions: "subject:"pointfuse"" "subject:"pointilleuse""
1 |
Catalytic destruction of monochloramine using granular activated carbon for point of use applicationsCherasia, Eric Charles 29 October 2013 (has links)
Chloramines are used for disinfection in many water treatment facilities because of their ability to provide residual protection of water supplies while minimizing the formation of disinfection-by-products. However, chloramines can impart taste and odor to the water, which can lead to customer complaints. Furthermore, the removal of monochloramine from water is essential for certain industries. Previous research at the University of Texas at Austin has demonstrated the potential of several granular activated carbons (GAC) for removal of monochloramine under conditions typical of water treatment plants. The goal of this research project is to further quantify steady-state monochloramine reduction in fixed bed reactors (FBR) with three commercially available GACs, and improve the understanding of the physical and chemical properties that influence removal. The research was divided into 3 phases:
1. A laboratory scale fixed bed reactor experiment was used to quantify steady state monochloramine removal over time. City of Austin tap water
viii
was used for three GAC types (Jacobi CAT, Norit CAT, Nority CNS) at pH 8 and 9.
2. Physical characterization of each GAC was performed using analysis of nitrogen adsorption isotherms. Specific surface area, pore volume, and pore distribution were determined. Chemical characterization was performed quantitatively using Boehm titrations. Qualitative analysis was performed by analyzing FTIR spectra of untreated activated carbon samples.
3. The Monochloramine Catalysis (MCAT) model was calibrated using results from the Phase 1 and 2 experiments. Simulations of full scale point of use drinking water filters were run for various empty bed contact times and influent monochloramine concentrations. These results were compared against National Sanitation Foundation monochloramine reduction certification criteria.
Results show that steady state removal was achieved for all of the activated carbons tested and this removal efficiency can reach nearly 90% using a 0.75-minute empty bed contact time. This steady state performance indicated that catalysis of the monochloramine was occurring, and removal could theoretically occur for very long periods of time. The second stage of the research shows correlation between chemical characteristics (acidity and basicity) and removal efficiency. Furthermore, physical characteristics, mainly micro-porosity, were shown to largely impact performance. Finally, the MCAT model provides a reasonable estimate of steady state removal, and is used to predict full scale point of use performance. / text
|
2 |
Novel Strategies for the Detection of Pathogens in Drinking WaterMiles, Syreeta January 2010 (has links)
To protect public health, detection methods have been developed to monitor drinking water for pathogens. The goal of this dissertation is to evaluate and utilize novel methods that enhances detection and further reduces the risk of waterborne pathogens. The study in Appendix A developed a method to monitor the microbial quality of treated drinking water at the tap utilizing point-of-use (POU) filter. Tap water supplies were monitored in vending machines throughout Southern Arizona using solid block carbon (SBC) filters as a monitoring tool. Out of 48 SBC filters 54.2% were positive for at least one organism. The number of filters positive for total coliforms, E. coli, Enterococci, and enterovirus was 13, 5, 19, and 3, respectively, corresponding to 27.1%, 10.4%, 39.6%, and 6.3% of the total filters. These results suggest that the SBC filter can be used to monitor large volumes of treated drinking water and detect the incidence of indicators and pathogens. The study in Appendix B evaluated the fate of infectious prions in multiple water sources quantitatively utilizing a method that only detects infectious prions. A reduction of PrPˢᶜ was observed at 25°C and 37°C ranging between 0.41-log₁₀ and 1.4-log₁₀ after 1 week. After 8 weeks at 25°C and 37°C, inactivation ranged between 1.65-log₁₀ and 2.15-log₁₀. A maximum rate of inactivation in water occurred at 50°C, ranging from 2.0-log₁₀ and 2.51-log₁₀ after one week. The results from all types of water suggest that dissolved organic matter and temperature influence PrPˢᶜ infectivity. The study in Appendix C evaluated real-time sensors for monitoring microbial contaminants. Most sensor parameters evaluated exhibited an increase in sensor response to an increase in E. coli concentrations. Responses to E. coli concentrations at or below 10³ cfu/mL were very low due to near background levels, and responses to concentrations above 10⁶ cfu/mL exceeded threshold levels for sensors that use light scattering methods due to saturation in the flow cell. The data produced effectively shows that the sensors evaluated could be used to monitor microbial intrusion events in water distribution systems.
|
3 |
A Survey of Point of Use Household Water Treatment Options for Rural South IndiaJeffreys, Kendralyn G 06 January 2012 (has links)
Contaminated drinking water is one of the major health challenges facing people in the developing world. The country of India leads the world in under age five mortality due to diarrheal disease, which is attributed to water and food contamination. While the Indian government has made progress in expanding access to improved water sources in the last decade, the microbiological quality of the water is unpredictable. Point of use household water treatment systems can provide clean drinking water for people who do not have access to a clean water source. This report examines five non-electrical point of use household water treatment options which have been extensively field-tested and could potentially be used in rural, South Indian villages: chlorine disinfectant, chlorine-flocculant sachets, ceramic filters, biosand filters and solar disinfection. A case study of a village in Andhra Pradesh is presented that highlights the factors to consider when introducing a new POU technology into a community.
|
4 |
Electrospun Polymeric Nanocomposites for Aqueous Inorganic and Organic Pollutant RemovalJanuary 2018 (has links)
abstract: Electrospinning is a means of fabricating micron-scale diameter fiber networks with enmeshed nanomaterials. Polymeric nanocomposites for water treatment require the manipulation of fiber morphology to expose nanomaterial surface area while anchoring the nanomaterials and maintaining fiber integrity; that is the overarching goal of this dissertation. The first investigation studied the effect of metal oxide nanomaterial loadings on electrospinning process parameters such as critical voltage, viscosity, fiber diameter, and nanomaterial distribution. Increases in nanomaterial loading below 5% (w/v) were not found to affect critical voltage or fiber diameter. Nanomaterial dispersion was conserved throughout the process. Arsenic adsorption tests determined that the fibers were non-porous. Next, the morphologies of fibers made with carbonaceous materials and the effect of final fiber assembly on adsorption kinetics of a model organic contaminant (phenanthrene, PNT) was investigated. Superfine powdered activated carbon (SPAC), C60 fullerenes, multi-walled carbon nanotubes, and graphene platelets were added to PS and electrospun. SPAC maintained its internal pore structure and created porous fibers which had 30% greater PNT sorption than PS alone and a sevenfold increase in surface area. Carbon-based nanomaterial-PS fibers were thicker but less capacious than neat polystyrene electrospun fibers. The surface areas of the carbonaceous nanomaterial-polystyrene composites decreased compared to neat PS, and PNT adsorption experiments yielded decreased capacity for two out of three carbonaceous nanomaterials. Finally, the morphology and arsenic adsorption capacity of a porous TiO2-PS porous fiber was investigated. Porous fiber was made using polyvinylpyrrolidone (PVP) as a porogen. PVP, PS, and TiO2 were co-spun and the PVP was subsequently eliminated, leaving behind a porous fiber morphology which increased the surface area of the fiber sevenfold and exposed the nanoscale TiO2 enmeshed inside the PS. TiO2-PS fibers had comparable arsenic adsorption performance to non-embedded TiO2 despite containing less TiO2 mass. The use of a sacrificial polymer as a porogen facilitates the creation of a fiber morphology which provides access points between the target pollutant in an aqueous matrix and the sorptive nanomaterials enmeshed inside the fiber while anchoring the nanomaterials, thus preventing release. / Dissertation/Thesis / Doctoral Dissertation Engineering 2018
|
5 |
Practical Application of NSF/ANSI 53 Lead Certified Filters: Investigating Lead Removal, Clogging and Consumer ExperiencePurchase, Jeannie Marie 17 February 2022 (has links)
NSF/ANSI 53 lead-certified point-of-use filters (POUs) have been distributed to consumers in many cities facing water lead crises, including Washington D.C., Flint, MI, Newark, NJ, and University Park, IL. It is expected that these filters would reduce water lead to levels that are safe for consumption as residents wait for municipalities to provide more permanent solutions (e.g., corrosion control, lead service line replacement). These filters are certified by the National Sanitation Foundation (NSF) after meeting the challenges of treating two lab synthesized waters with 150 μg/L of soluble and particulate lead. In Flint, as in Washington, there were initial concerns that the filters would not be effective when exposed to lead levels far above the NSF/ANSI 53 150 μg/L Pb level used for certification. However, the EPA conducted a 2016 study in Flint, MI, with over 240 homes with lead up to 4080 μg/L, revealing that all POUs reduced lead levels below 1 μg/L.
Newark, NJ, in response to Lead and Copper Rule (LCR) violations, distributed over 40,000 NSF/ANSI 53 lead-certified pitcher and faucet POUs to protect consumers from high water lead levels. In the summer of 2019, preliminary tests in some homes with the highest lead in water concentrations revealed that 2 of 3 POUs used in Newark had effluent lead levels above 15 μg/L. The publication of these results caused citywide angst, distrust, and EPA mandated a switch to bottled water. However, a later and more extensive study revealed that 97.5% of homes (n=198) with properly used filters had effluent lead levels below 10 μg/L. As a result, the EPA approved Newark's request to discontinue bottled water distribution and only provide POUs to residents. Nevertheless, the experience indicated that it is vital to understand the limitations of POUs. This dissertation comprises three manuscripts that examine the efficacy of POUs under laboratory and field conditions.
The first manuscript sought to provide perspective into potential causes of the filter failures observed in the field. We conducted an extensive laboratory investigation that examined the performance of 10 pitcher and faucet POU brands under extreme conditions (e.g., up to 200% of rated capacity, influent lead levels ≈ 1000 μg/L). Our tests confirmed successful performance documented in some field testing and replicated underperformance observed in others. In this investigation, we observed structural failures due to poor manufacturing (i.e., leaking units, a filter with a large hole in the media) and performance failures (filtered water >10 μg/L Pb). Some of the performance failures occurred when we tested particulate lead waters, which we created, proving to be very difficult to treat relative to those used for NSF/ANSI testing. While the POUs almost always reduce consumer lead exposure, even when operated beyond their rated capacity, this study highlights instances where treated water could far exceed 10 μg/L lead.
High particulate iron (Fe) and manganese (Mn) concentrations often co-occur with high lead in many low-income, rural communities with small community water systems (CWS) or in homes with private wells. These communities are more likely to depend on POUs for protection from waterborne lead as they typically do not have the funds to maintain and upgrade infrastructure, improve corrosion control, or replace service lines. Waters with high levels of Fe and Mn could potentially impact the performance of the POU lead filters. However, such problems would not be detected in NSF/ANSI certification testing because these constituents are not included within the test water.
The second manuscript validated anecdotal reports of premature POU failure due to clogging in rural communities with high iron concentrations in their water. POU pitcher filters were tested with waters containing high lead and iron up to 100% of their rated capacity, or until they clogged as defined by a 75% reduction in initial flowrate. Iron levels above the 0.3 mg/L Secondary Maximum Contaminant Level (SMCL) resulted in rapid clogging, markedly increasing treatment costs, and decreasing consumer satisfaction. At 0.3 mg/L Fe, half of the 6 POU filters tested were clogged at between 38-68% of their rated capacity. When considering the cost of using POU filters vs. purchasing bottled water, the POU devices were often more cost-effective at iron levels at or below 0.3 mg/L. However, as iron concentrations increased, bottled water often became cost-effective depending on the circumstance. The presence of iron did not have an adverse effect on lead removal but significantly affected the cost and reduced flow rates in treating water.
The third manuscript presents a two-phase field study that sought to monitor the long-term filter performance in residential homes in New Orleans and Enterprise, LA. Previous field studies have captured POU removal efficiencies in single event (grab) samples; however, this study quantified filter performance for all the water treated up to POU practical capacity (i.e., filter life) based on consumer judgment regarding acceptable flow rate. The first phase was a rigorously controlled study that tested the POUs (100-gal capacity) at up to 200% of their rated capacity in two New Orleans unoccupied homes. Historically, the first home had consistently high lead levels (10-25 μg/L) even after flushing for > 8 min. Duplicate POUs treated that water to below 5 μg/L at up to 100% capacity, with only two exceptional samples with 12 μg/L Pb in 10-gallon batches of the treated water. The second home had a disturbed lead service line (LSL), resulting in varying concentrations of influent particulate lead ranging from 9-3000 μg/L. The duplicate POUs had difficulty producing water lead levels <10 μg/L before reaching filter capacity, with eight exceedances prior to 100% capacity. This work demonstrated that flushing alone for extended periods (>8 minutes) is not guaranteed to reduce lead levels in all homes with LSLs and highlights some limitations of POU filters in treating water with high levels of particulate lead.
The second phase of the field study monitored POU faucet filter performance in the homes of 21 residents in New Orleans (8) and Enterprise (13), LA. New Orleans is a large urban area with low to moderate water lead levels with many partial LSL replacements. Enterprise (population <300) is a rural, low-income community with an unincorporated water system with moderate to high water lead, iron, and manganese levels. Overall, the POUs consistently reduced lead to <1 μg/L, iron <171 μg/L, and manganese <180 μg/L. Enterprise's high influent concentrations of iron significantly impacted filter capacity due to reduced flow and clogging. Enterprise homes saw an average 62% flowrate reduction, and most of the homes did not reach 50% of the filter's rated capacity before consumers decided the filters were clogged. Most New Orleans residents did not experience clogging, and the homes that did saw only a 16% flow rate reduction. Overall, the New Orleans POUs were 2.3X faster in treating water by the study's end than Enterprise. There was no simple correlation between average iron concentration and days of filter life amongst residents in Enterprise as would be expected given variations in the volume of water used daily and consumer subjectivity in deciding when to end the study due to clogging. However, residents in Enterprise and similar communities would likely need to purchase 2-4 times as many filter cartridges due to clogging when compared to cities like New Orleans with lower iron concentrations. This study shows how POUs have promise for the removal of Pb and Fe in residential homes, but clogging has emerged as an important practical limitation to widespread successful POU deployment.
This dissertation highlighted the multifaceted nature of the question: "How well do POU filters work and under what conditions?" Overall, the POUs have shown their ability to reduce water lead levels effectively <5 μg/L, with a few exceptions primarily attributed to particulate lead and manufacturing quality control issues. However, when treating waters with high levels of iron and other contaminants, POU clogging can cause consumer dissatisfaction and make purchasing bottled water a more favorable solution than POU filters. / Doctor of Philosophy / Lead-certified point-of-use filters (POUs) have been distributed to consumers in many cities facing water lead crises, including Washington D.C., Flint, MI, Newark, NJ, and University Park, IL. In Flint, as in Washington, there were initial concerns that the filters would not be effective when exposed to lead levels far above the 150 μg/L lead concentration used for certification. The EPA conducted a 2016 study in Flint, MI (>400 homes) that showed all POUs successfully reduced lead levels below 1 μg/L. Newark, NJ, distributed over 40,000 lead-certified pitcher and faucet POUs to protect consumers from high water lead levels. In the summer of 2019, preliminary tests in some homes with the most challenging particulate lead in water concentrations revealed that 2 of 3 POUs used in Newark had effluent lead levels above 15 μg/L. The publication of these results caused citywide angst, distrust and an EPA mandated a switch to bottled water. A few weeks later, a more extensive study revealed that over 97.5% of homes had filters that effectively reduced lead. Millions of dollars invested in the POU filters in Newark were wasted as many residents discontinued use despite positive counter-messaging of overall POU performance. Newark's filter experience illuminated how vital it is to understand the limitations of lead-certified filters as our reliance on these POUs for lead remediation increases. This dissertation comprises three manuscripts that examine the efficacy of lead-certified POUs under laboratory and field conditions.
The first manuscript provides some perspective into potential causes of the filter failures observed in the field. We conducted an extensive laboratory investigation that examined the performance of 10 pitcher and faucet POU brands under extreme conditions (i.e., used well past capacity and with high lead concentrations). Our tests confirmed successful performance documented in some field testing and replicated underperformance observed in others. In addition, this investigation observed structural failures due to poor manufacturing and performance failures (> 10 μg/L Pb) when testing particulate lead waters. While the POUs almost always reduce consumer lead exposure, even when operated beyond their rated capacity, this study highlights instances where filtered water could far exceed 10 μg/L lead.
The second manuscript validated anecdotal reports of premature POU failure due to clogging in rural communities with high iron concentrations in their water. Particulate iron (Fe) and manganese (Mn) often co-occur with high lead concentrations and cause most discoloration seen in drinking water (i.e., orange and black water). Low-income rural communities with small water systems are more likely to depend on POUs to protect them from waterborne lead as they typically do not have the funds to maintain and upgrade infrastructure, improve corrosion control, or replace service lines.
In this study, POU pitcher filters were tested with waters containing high lead and iron up to 100% of their rated capacity, or until they clogged as defined by a 75% reduction in initial flowrate. The presence of iron did not have an adverse effect on lead removal. However, iron significantly affected POU water treatment costs and reduced flow rates. Iron levels above the 0.3 mg/L Secondary Maximum Contaminant Level (SMCL) resulted in rapid clogging prior to reaching rated capacity, resulting in increased treatment costs and decreased consumer satisfaction and convenience. When considering the cost of using POU filters vs. purchasing bottled water, the POU devices were often more cost-effective at iron levels 0.3 mg/L. However, as iron concentrations increased, bottled water often became cost-effective depending on the circumstance.
The third manuscript presents a two-phase field study that sought to monitor the long-term filter performance in residential homes in New Orleans and Enterprise, LA. Previous field studies have captured POU removal efficiencies in single event (grab) samples. However, this study captures filter performance for all the water treated up to POU practical capacity (i.e., filter life) based on consumer judgment regarding acceptable flow rate. The first phase was a controlled rig study that tested the POUs filters (100-gal capacity) up to 200% capacity in two New Orleans unoccupied homes. Historically, the first home had consistently high lead levels (10-25 μg/L) even after flushing for > 8 min. Throughout the 20-day study, the duplicate POUs in this home supplied filtered water with <5 μg/L Pb up to 100% capacity, with only two exceptions (each sample had 12 μg/L Pb). The second home had a disturbed lead service line (LSL), resulting in varying concentrations of influent particulate lead ranging from 9-3000 μg/L. The duplicate POUs in this home did not consistently produce filtered water with <10 μg/L Pb, as they had eight exceedances before reaching 100% capacity. This work demonstrated that flushing the tap is not guaranteed to reduce lead levels in all homes with LSLs, even when flushing >8 minutes. It also highlighted some limitations of POU filters in treating water with high levels of particulate lead.
The second phase of the field study monitored POU faucet filter performance in the homes of 21 residents in New Orleans (8) and Enterprise (13), LA. New Orleans is a large urban area with low to moderate water lead levels with many partial LSL replacements. Enterprise (population <300) is a rural, low-income community with an unincorporated water system with moderate to high water lead, iron, and manganese levels. Overall, the POUs consistently reduced lead to <1 μg/L, iron <171 μg/L, and manganese <180 μg/L. Enterprise's high influent concentrations of iron significantly impacted filter capacity due to reduced flow and clogging. Most of the homes in Enterprise did not reach 50% of the filter's rated capacity before consumers decided the filters were clogged. The New Orleans residents did not experience POU clogging, and many filters reached capacity. The New Orleans filters were also 2.3X faster in treating water by the study's end than Enterprise. There was no statistical correlation between iron concentration and filter life; however, residents in Enterprise and similar communities would likely need to purchase 2-4 times as many filter cartridges due to clogging compared to cities like New Orleans with lower iron concentrations. This study shows how POUs have promise for the removal of Pb and Fe in residential homes. However, clogging has emerged as an important practical limitation to successful POU deployment.
This dissertation highlighted the multifaceted nature of the question: "How well do POU filters work and under what conditions?" Overall, the POUs have shown their ability to reduce water lead levels effectively <5 μg/L, with a few exceptions primarily attributed to particulate lead and manufacturing quality control issues. However, when treating waters with high levels of iron and other contaminants, POU clogging can cause consumer dissatisfaction and make purchasing bottled water a more favorable solution than POU filters.
|
6 |
Development of Water and Wastewater Biofiltration Technologies for the Developing World using Locally Available Packing Media: Case Studies in Vietnam and HaitiThomson, Ashley Anne January 2014 (has links)
<p>Water and sanitation are two of the world's most urgent current challenges (Elimelech, 2006). With a population racing towards seven billion people, over one sixth of the human population does not have access to adequate water and sanitation. Drinking water is inaccessible for approximately 783 million people living in the developing world (WHO, 2014). This is especially critical for people at risk of exposure to deadly pathogens such as <italic>Vibrio cholerae</italic>, <italic>Shigella</italic>, and <italic>Salmonella</italic>, such as those living in Haiti as <italic>Vibrio cholerae</italic> is now ubiquitous (Enserink, 2010). On the sanitation side, more than 2.5 billion people in the world still lack access to adequate resources (WHO, 2014). Almost half of these people have access to no sanitation facilities at all and practice open defecation (WHO, 2014). Thousands of small children still die every day from preventable diseases caused by inadequate sanitation (WHO, 2014). As global climate change is expected to exacerbate these issues, there is an urgent need for the development of sustainable treatment technologies to ensure a better tomorrow for our world (Ford, 1999). Safe water and sanitation technologies, while often disjointed, should be considered together as pathogens transmitted via drinking water are predominantly of fecal origin (Ashbolt, 2004; Montgomery, 2007). </p><p>In this dissertation project, I explore the use of both drinking water and wastewater treatment technologies which are cost effective and rely on locally available materials in low-income countries. For the drinking water treatment side, I focus on the use of biosand filters in Haiti with a specific interest in understanding their ability to remove the pathogen <italic>Vibrio cholerae</italic>, the causative agent for cholera. The wastewater treatment technology consists of biofilters packed with cocopeat, a waste product generated during coconut husk processing, and I investigate their use for the treatment of septic tank effluent in Vietnam. Both of these projects combine lab and field work. The specific objectives of this dissertation project are to 1) compare the removal efficiency of <italic>V. cholerae</italic> to indicator bacteria in field biosand filters and determine the parameters controlling removal; 2) investigate the correlation between removal efficiency of pathogens in field biosand filters having operated for varying lengths of time to schmutzdecke bacterial composition and influent water characteristics; 3) determine the effect of number of charges, total organic carbon loading, and schmutzdecke composition on <italic>V. cholerae</italic> removal efficacy; 4) isolate the effect of biological removal mechanisms and physical/chemical removal mechanisms on <italic>V. cholerae</italic> removal efficiency and determine the correlation to TOC concentration in water; 5) evaluate cocopeat as a packing medium for biofilters in terms of nitrogen, phosphorus and biological oxygen demand removal from simulated wastewater as compared to other traditional packing media; and 6) conduct an assessment of cocopeat-packed, vertical flow constructed wetlands treating septic tank effluent in the Mekong Delta of Vietnam. </p><p>In the first part of this dissertation, biosand filters in the Artibonite Valley of Haiti, the epicenter of the cholera epidemic, were tested for total coliform and <italic>V. cholerae</italic> removal efficiencies. In addition, schmutzdecke samples were collected in order to measure the amount of EPS in the biofilm, as well as characterize the microbial community. Total coliform and <italic>V. cholerae</italic> concentration were measured using novel membrane filtration technique methods. It was found that total coliform concentration does not indicate <italic>V. cholerae</italic> concentration in water, and total coliform removal efficiency does not indicate <italic>V. cholerae</italic> removal efficiency within biosand filters. Additionally, parameters controlling biosand filter performance include: schmutzdecke composition, time in operation, and idle time.</p><p>In the second part of this dissertation, <italic>V. cholerae</italic> challenge tests were performed on laboratory-operated biosand filters receiving high, medium or low TOC influents in order to determine the effect of number of charges, total organic carbon loading, and schmutzdecke composition on <italic>V. cholerae</italic> removal efficacy, as well as to isolate the effect of biological removal mechanisms and physical/chemical removal mechanisms on <italic>V. cholerae</italic> removal efficiency and determine the correlation to TOC concentration in water. To this end, three biosand filters were operated in the lab. Each received lake water or diluted lake water with high, medium or low concentrations of TOC. After being charged once per day for 6 days, the filters were charged with four consecutive charges of pure cultures of <italic>V. cholerae</italic> suspended in PBS buffer, at concentrations of 10<super>2</super>, 10<super>3</super>, 10<super>5</super>, and 10<super>7</super> cfu/mL. This challenge was repeated each time the filters received an additional 6 charges, up to 66 total charges. This was done to determine how number of charges, TOC loading, and schmutzdecke composition affects removal efficiency. Schmutzdecke was analyzed for amount of EPS and microbial community. It was found that parameters controlling biosand filter performance include: TOC loading, schmutzdecke composition, time in operation, and physical/chemical attachment. Additionally, it was shown that physical/chemical attachment is critical during startup, especially at low TOC concentrations. At steady state, physical/chemical attachment is more important than schmutzdecke effects in filters receiving low TOC, and schmutzdecke effect is more important than physical/chemical attachment in filters receiving high TOC.</p><p>For the third section of this dissertation, columns packed with cocopeat, celite, or sphagnum peat were charged with simulated wastewater and removal efficiencies of nitrogen, phosphorus, and biological oxygen demand were measured. Additionally, different redox zones were tested to determine if cocopeat could successfully accomplish nitrification and denitrification. It was found that cocopeat is comparable to traditional packing media and can successfully accomplish nitrification and denitrification in the treatment of synthetic wastewater.</p><p>In the final section of this dissertation, constructed wetlands were built and packed with cocopeat to determine if cocopeat is a suitable packing media in constructed wetlands treating wastewater in Vietnam. Removal efficiencies of nitrogen, phosphorus, and biological demand were measured. Microbial community samples were collected periodically in order to analyze community shifts between wetlands and over time. This work concluded that cocopeat can be used successfully as a packing media in constructed wetlands treating wastewater for the removal of nitrogen, phosphorus, and total coliform.</p><p>Overall, this dissertation work contributes to the body of knowledge on point-of-use water and wastewater technologies. The biosand filter was studied in both lab and field conditions and it was found that total coliform is not a reliable indicator for <italic>V. cholerae</italic>, and that there are several factors controlling biosand filter performance, including idle time, TOC, filter time in operation, physical/chemical attachment, and schmutzdecke composition. Cocopeat was studied for its ability to promote nitrification and denitrification in lab-scale vertical flow columns treating synthetic wastewater. It was shown that cocopeat achieved similar levels of nitrification and denitrification as traditional packing media. Finally, cocopeat packed vertical flow constructed wetlands were operated in Vietnam for the treatment of septic tank effluent. This setup proved effective for the removal of nitrogen, phosphorus, and total coliform in the treatment of wastewater.</p> / Dissertation
|
7 |
Quality assessment of domestic harvested rainwater in the peri-urban region of Kleinmond, Western Cape and the optimisation of point-of-use treatment systemsDobrowsky, Penelope Heather 04 1900 (has links)
Thesis (MSc)--Stellenbosch University, 2014. / ENGLISH ABSTRACT: Domestic rainwater harvesting (DRWH) refers to the collection and storage of rainwater for domestic purposes and in an effort to achieve the Millennium Development Goals (MGD), the South African government has started an initiative where DRWH tanks are financed in sustainable housing schemes in an aim to provide an additional water source directly to households. Although many provinces, including parts of the Eastern Cape and KwaZulu Natal, have been using harvested rainwater as a potable water source, there are a limited number of studies indicating the quality of harvested rainwater in South Africa. However, many studies, internationally, have indicated that while the practice of harvesting rainwater is gaining popularity, rainwater quality is not within potable standards (Chapter 1).
During the first phase of the study, rainwater samples were collected from the Kleinmond Housing Scheme (Western Cape, South Africa). From a cluster of 411 houses, the DRWH tanks connected to 29 houses were selected for monitoring the microbial and physico-chemical properties of harvested rainwater. Drinking water guidelines stipulated by SANS 241 (2005), DWAF (1996), ADWG (NHMRC and NRMMC, 2011) and WHO (2011) were used throughout the study to monitor the quality of rainwater. Eight sampling sessions were then conducted from March to August 2012, during a high and low rainfall period. Overall, the physico-chemical parameters of the rainwater samples were within the respective drinking water guidelines. However, the microbiological analysis verified results obtained in international studies, and showed that the indicator bacteria numbers present in the DRWH samples exceeded the stipulated guidelines (Chapter 2 and 3). Species specific primers were also used to routinely screen for the virulent genes, aggR, stx, eae and ipaH found in Enteroaggregative E. coli (EAEC), Enterohaemorrhagic E. coli (EHEC), Enteropathogenic E. coli (EPEC) and Enteroinvasive E. coli (EIEC), respectively, in the rainwater samples. The virulent pathogenic E. coli genes were then detected in 3% (EPEC and EHEC) and 16% (EAEC) of the 80 rainwater samples collected routinely during the sampling period from ten DRWH tanks (Chapter 3). Bacterial isolates selected during the high rainfall period (June to August 2012), as well as PCR assays performed on total genomic DNA extraction from the rainwater samples, confirmed the presence of numerous pathogenic bacteria including Legionella spp. Klebsiella spp. and Shigella spp. Yersinia spp. were also isolated and detected for the first time in DRWH tanks (Chapter 4).
Based on the results obtained in the first phase and as many studies have indicated the poor quality of rainwater, the second phase of the project was aimed at designing and monitoring point of use treatment systems. Three polyethylene DRWH tanks (2000 L) were installed at the Welgevallen Experimental farm, Stellenbosch University, South Africa. Various treatment systems, such as activated carbon and slow sand filtration, solar pasteurization and a combined activated carbon/PVA nanofibre filtration column, were then intermittently connected to the three DRWH tanks during the high rainfall period (June to October 2013). Results for slow sand filtration and activated carbon filters indicated that the biological layer that had developed on the filtration media had not matured and for this reason chemical and microbial parameters were not reduced to within drinking water guidelines. A polyvinyl (alcohol) (PVA) nanofibre membrane without activated carbon in a column filtration system was analysed and results indicated that this system was also not effective in reducing the microbial numbers to within drinking water guidelines. Lastly, by utilising a PVA nanofibre membrane with activated carbon in a column filtration system, one litre of potable water was produced and all heterotrophic bacteria, E. coli and total coliform counts were reduced to zero and were within drinking water guidelines (Chapter 5). For the solar pasteurization system (Chapter 6), at treatment temperatures of greater than 72°C, all heterotrophic bacteria, E. coli and total coliforms were reduced to zero and were within drinking water guidelines. However, PCR assays confirmed the presence of Yersinia spp., Legionella spp., and Pseudomonas spp., at temperatures greater than 72°C. Results for chemical analysis also indicated all cations were within the international and national drinking water guidelines, with the exception of iron, aluminium, lead and nickel, which were detected in the pasteurized rainwater samples and were above the respective guidelines. It is hypothesised that these elements could have leached from the stainless steel storage tanks of the pasteurization system and it is therefore recommended that the storage tank of the pasteurization system be manufactured from an alternative material, such as a high grade polymeric material, which is able to withstand the high temperatures yet will not negatively influence the quality of harvested rainwater. / AFRIKAANSE OPSOMMING: Reënwater versameling vir huishoudelike gebruik verwys na die versameling en berging van reënwater vir huishoudelike doeleindes. In 'n poging om die Millennium Ontwikkelingsdoelwitte (MOD) te bereik het die Suid-Afrikaanse regering ‘n inisiatief begin om finansiële bystand aan huishoudings te verleen vir die implementering van reënwater tenke, in ‘n poging om ‘n addisionele water bron direk aan huishoudings te verskaf. Hoewel baie provinsies, insluitend dele van die Oos-Kaap en KwaZulu-Natal, reënwater gebruik as ‘n drinkbare water bron, is daar 'n beperkte aantal studies beskikbaar oor die gehalte van versamelde reënwater in Suid-Afrika. Baie studies internasionaal het egter al aangedui dat, alhoewel die praktyk van die versameling van reënwater besig is om in gewildheid toe te neem, die kwaliteit van reënwater nie binne drinkbare standaarde is nie (Hoofstuk 1).
Tydens die eerste fase van die studie is reënwater monsters geneem van die Kleinmond Behuisings Skema (Wes Kaap, Suid Afrika). Van ‘n kompleks van 411 huise, is reënwater tenke van 29 huise geselekteer vir die monitering van die mikrobiese en fisiese-chemiese eienskappe van versamelde reënwater. Drinkwater riglyne soos gestipuleer deur SANS 241 (2005), DWAF (1996), AWDG (NHMRC en NRMMC, 2011) en WHO (2011) was regdeur die studie gebruik om die kwaliteit van reënwater te monitor. Reënwater monsters is tydens agt geleenthede geneem vanaf Maart tot Augustus 2012, tydens die hoë en lae rëenval periode. Oor die algemeen was die fisiese-chemiese parameters van die reënwater monsters binne die onderskeie riglyne vir drinkwater. Mikrobiese analises het egter die resultate van internasionale studies bevestig en het aangedui dat die getal indikator bakterieë teenwoordig in the reënwater die gestipuleerde riglyne oorskry (Hoofstuk 2 en 3). Spesies spesifieke inleiers was gebruik om die virulensie gene aggR, stx, eae en ipaH, teenwoordig in onderskeidelik Entero-aggregatiewe E. coli (EAEC), Entero- hemorragiese E. coli (EHEC), Entero-patogeniese E. coli (EPEC) and Entero-indringende E. coli (EIEC), in die reënwater monsters op te spoor. Die virulente pathogeniese E. coli gene was in 3% (EPEC en EHEC) en 16% (EAEC) van die 80 reënwater monsters, geneem van 10 reënwater tenke tydens die studie, waargeneem (Hoofstuk 3). Bakteriese isolate geselekteer tydens die hoë reenval periode (Junie tot Augustus 2012), so wel as PKR (polymerase ketting reaksie) ontledings uitgevoer op genomiese DNS wat van die reënwater monsters ge-ekstraheer was, het die teenwoordingheid van verskeie patogeniese bakterieë, insluitend Legionella spp., Klebsiella spp. en Shigella spp., bevestig. Dit is ook die eerste keer wat Yersinia spp. in versamelde reënwater waargeneem is (Hoofstuk 4). Die doel van die tweede fase van die projek was om water behandeling sisteme by die punt van gebuik te ontwerp en te monitor aangesien die resultate wat gedurende die eerste fase verkry is, sowel as vele ander studies, aangedui het dat die kwaliteit van versamelde reënwater swak is. Drie poli-etileen reënwater tenke (2000 L) was geïnstalleer op die Welgevallen Eksperimentele plaas van die Universiteit van Stellenbosch, Suid Afrika. Verskeie water behandeling sisteme, soos geaktiveerde koolstof en stadige sand filters, sonkrag pasteurisasie en ‘n gekombineerde geaktiveerde koolstof/PVA nanovesel filtrasie kolom, was met tye gekonnekteer aan verskeie reënwater tenke gedurende die hoë reënval periode (Junie to Oktober 2013). Resultate van die stadige sand en geaktiveerde koolstof filters het aangedui die biologiese laag nog nie ver genoeg ontwikkeld het nie en daarom was die chemiese en mikrobiese parameters nie verminder to binne die riglyne vir drinkwater nie. ‘n Polyviniel (alkohol) nanovesel membraan sonder geaktiveerde koolstof binne ‘n kolom filtrasie sisteem, was geanaliseer en resultate het aangedui dat hierdie sisteem ook nie die mikrobiese getalle verminder het tot drinkwater standaarde nie. Laastens, deur gebruik te maak van ‘n PVA nanovesel membraan met geaktiveerde koolstof in ‘n kolom filtrasie sisteem, was een liter drinkbare water geproduseer met alle heterotrofiese bakterieë, E. coli en totale koliform getalle verminder tot nul en was binne die riglyne vir drinkwater (Hoofstuk 5). Vir die sonkrag pasteurisasie sisteem (Hoofstuk 6), by behandelings temperature van groter as 72°C, was alle heterotrofiese bakterieë, E. coli en totale koliform getalle verminder tot nul en was binne die riglyne vir drinkwater. Maar PKR ontledings het die teenwoordigheid van Yersinia spp., Legionella spp., en Pseudomonas spp. by temperature groter as 72°C bevestig. Resultate van die chemiese analises het ook aangedui dat alle katione binne die drinkwater riglyne was, met die uitsondering van yster, aluminium, lood en nikkel. Hierdie elemente was in die gepasteuriseerde reënwater monsters waargeneem met konsentrasies wat die onderskeie riglyne oorskry het. Dit word gehipoteseer dat hierdie elemente uit die vlekvrye staal van die bergings tenk van die pasteurisasie sisteem kon uitgeloog het. Daarom word dit aanbeveel dat die bergings tenk van die pasteurisasie sisteem geproduseer moet word van ‘n alternatiewe materiaal, soos ‘n hoë graad polimeriese material, wat hoë temperature kan weerstaan maar nie ‘n negatiewe invloed sal hê op die kwaliteit van versamelde reënwater nie.
|
8 |
Filtração lenta domiciliar como alternativa de tratamento de água em comunidades isoladas: eficiências com e sem controle de nível da água e aceleração do amadurecimento / Household slow sand filtration as a water treatment alternative in isolated communities: efficiencies with and without water level control and ripening accelerationPaulo Marcos Faria Maciel 06 November 2018 (has links)
A falta de água potável é um agravo que atinge populações em nível mundial e nacional e as pequenas comunidades isoladas são as que estão mais suscetíveis à essa vulnerabilidade. Essas localidades demandam soluções descentralizadas, como o filtro lento domiciliar (FLD). Nesse contexto, nesta tese propõe-se a construção de FLD com materiais de PVC, de fácil aquisição e montagem simples. Na Fase 1 do trabalho, compararam-se FLDs com regime de fluxo intermitente, com (FI) e sem (FIS) controle do nível da água por boia; e contínuo, com (FC) e sem (FCS) boia, tratando mistura de água subterrânea com caulinita. Analisaram-se turbidez remanescente, redução de Escherichia coli, tempo de amadurecimento e duração das carreiras de filtração para investigar o efeito da boia nos dois regimes. Na Fase 2, estudou-se a aceleração do amadurecimento nos dois regimes, usando como acelerador o pó de cacto Opuntia cochenillifera, tratando água natural. Compararam-se unidades intermitentes com (FIA) e sem (FI) acelerador, e unidades contínuas com (FCA) e sem (FC) acelerador. Nessa fase consideraram-se também a redução de coliformes totais, consumo de oxigênio dissolvido e remoção de cistos de Giardia e oocistos de Cryptosporidium além das variáveis consideradas na Fase 1. Nas duas fases estudaram-se as correlações de variáveis operacionais (taxa de filtração, perda de carga dividida por espessura de meio filtrante, tempo de operação, tempo após a manutenção) com eficiências para redução de bactérias e turbidez remanescente. O custo dos FLDs em PVC foi estimado em cerca de R$ 420,00. Os resultados indicaram que na Fase 1, FI demonstrou maiores carreiras de filtração que FIS, sem diferenças para as outras variáveis. FC apresentou turbidez remanescente média menor que FCS (1,24 ± 0,91 versus 1,90 ± 1,36 NTU). Na Fase 2, FIA apresentou melhor eficiência para redução de E. coli (2,32 ± 0,79 versus 1,936 ± 0,61 log) e menor turbidez remanescente média que FI, entre os contínuos, não houve diferença de eficiências (p.e. 2,51 ± 0,60 e 2,60 ± 0,56 log de E. coli), no entanto, FCA apresentou carreiras de filtração mais curtas que FC (33 ± 13 versus 60 ± 14 dias). A variável perda de carga nos primeiros 2 cm foi a com maior correlação com a redução de bactérias na Fase 1, enquanto que na Fase 2, a redução de bactérias se correlacionou melhor com turbidez remanescente. No estudo sobre de remoção de (oo)cistos de protozoários, 92% de 30 amostras não apresentaram os parasitos, no entanto, em duas amostras detectaram-se a presença de um oocisto de Cryptosporidium. Apesar de elevadas reduções de bactérias por FLDs, não houve amostras filtradas com ausência de coliformes, para tanto, fizeram-se testes com hipoclorito de sódio, que resultaram ausência de bactérias na água tratada. O controle por boia prolongou a carreira de filtração no regime intermitente e melhorou a turbidez filtrada no fluxo contínuo. O uso do acelerador de amadurecimento foi efetivo para eficiências dos FLDs apenas no fluxo intermitente. Dentre os modelos estudados, o FC apresentou melhores resultados em termos de eficiência e duração das carreiras de filtração. / The lack of drinking water is an aggravation affecting populations at the global and national levels and the small and isolated communities are the most susceptible to this vulnerability. These locations require decentralized solutions, such as the household slow sand filter (HSSF). In this context, in the present thesis is proposed the construction of a HSSF with PVC materials, of easy acquisition and simple assemble. In Phase 1 of the study, it was compared HSSFs with intermittent flow regime, with (FI) and without (FIS) water level control by float; and continuous, with (FC) and without (FCS) float, treating groundwater with kaolinite. Remaining turbidity, Escherichia coli reduction, ripening time and filtration run times were investigated to explore the effect of the float in the two regimes. In Phase 2 the acceleration of ripening was studied in both regimes, using as accelerator Opuntia cochenillifera cactus powder, treating natural water. Intermittent units were compared with (FIA) and without (FI) accelerator, and continuous units with (FCA) and without (FC) accelerator. In this phase, the reduction of total coliforms, dissolved oxygen consumption and removal of Giardia cysts and Cryptosporidium oocysts in addition to the variables considered in Phase 1 were also studied. In the two phases it was studied the correlation of operational variables (filtration rate, head loss divided by filter media thickness, time of operation, time after maintenance) with efficiencies for bacterial reduction and remaining turbidity. The cost of FLDs in PVC was estimated at around R$ 420.00. The results indicated that in Phase 1, FI had larger filtration runs than FIS, with no differences for the other variables. FC had turbidity remaining mean lower than FCS (1.24 ± 0.91 versus 1.90 ± 1.36 NTU). In Phase 2, FIA had a better efficiency to reduce E. coli (2.32 ± 0.79 versus 1.936 ± 0.61 log) and lower average remaining turbidity than FI, there were no differences in efficiencies (e.g. 2, 51 ± 0.60 and 2.60 ± 0.56 log of E. coli), however, FCA had shorter filtration runs than FC (33 ± 13 versus 60 ± 14 days). The variable head loss in the first 2 cm was the one with the highest correlation with E. coli reductions in Phase 1, while in Phase 2, the bacterial reduction correlated better with remaining turbidity. In the study on the removal of protozoa (oo)cysts, 92% of 30 samples did not present the parasites, however, in two samples the presence of a Cryptosporidium oocyst was detected. Despite high bacterial reductions by HSSFs, there were no filtered samples with absence of coliforms; therefore, sodium hypochlorite tests were performed, which resulted in no bacteria in the treated water. The float control extended the filtration run in the intermittent regime and improved the turbidity filtered in the continuous stream. The use of the ripening accelerator was effective for FLD efficiencies only in the intermittent flow. Between the studied models of filters, FC was the one with the better results of efficiencies and duration of filters run.
|
9 |
Filtração lenta domiciliar como alternativa de tratamento de água em comunidades isoladas: eficiências com e sem controle de nível da água e aceleração do amadurecimento / Household slow sand filtration as a water treatment alternative in isolated communities: efficiencies with and without water level control and ripening accelerationMaciel, Paulo Marcos Faria 06 November 2018 (has links)
A falta de água potável é um agravo que atinge populações em nível mundial e nacional e as pequenas comunidades isoladas são as que estão mais suscetíveis à essa vulnerabilidade. Essas localidades demandam soluções descentralizadas, como o filtro lento domiciliar (FLD). Nesse contexto, nesta tese propõe-se a construção de FLD com materiais de PVC, de fácil aquisição e montagem simples. Na Fase 1 do trabalho, compararam-se FLDs com regime de fluxo intermitente, com (FI) e sem (FIS) controle do nível da água por boia; e contínuo, com (FC) e sem (FCS) boia, tratando mistura de água subterrânea com caulinita. Analisaram-se turbidez remanescente, redução de Escherichia coli, tempo de amadurecimento e duração das carreiras de filtração para investigar o efeito da boia nos dois regimes. Na Fase 2, estudou-se a aceleração do amadurecimento nos dois regimes, usando como acelerador o pó de cacto Opuntia cochenillifera, tratando água natural. Compararam-se unidades intermitentes com (FIA) e sem (FI) acelerador, e unidades contínuas com (FCA) e sem (FC) acelerador. Nessa fase consideraram-se também a redução de coliformes totais, consumo de oxigênio dissolvido e remoção de cistos de Giardia e oocistos de Cryptosporidium além das variáveis consideradas na Fase 1. Nas duas fases estudaram-se as correlações de variáveis operacionais (taxa de filtração, perda de carga dividida por espessura de meio filtrante, tempo de operação, tempo após a manutenção) com eficiências para redução de bactérias e turbidez remanescente. O custo dos FLDs em PVC foi estimado em cerca de R$ 420,00. Os resultados indicaram que na Fase 1, FI demonstrou maiores carreiras de filtração que FIS, sem diferenças para as outras variáveis. FC apresentou turbidez remanescente média menor que FCS (1,24 ± 0,91 versus 1,90 ± 1,36 NTU). Na Fase 2, FIA apresentou melhor eficiência para redução de E. coli (2,32 ± 0,79 versus 1,936 ± 0,61 log) e menor turbidez remanescente média que FI, entre os contínuos, não houve diferença de eficiências (p.e. 2,51 ± 0,60 e 2,60 ± 0,56 log de E. coli), no entanto, FCA apresentou carreiras de filtração mais curtas que FC (33 ± 13 versus 60 ± 14 dias). A variável perda de carga nos primeiros 2 cm foi a com maior correlação com a redução de bactérias na Fase 1, enquanto que na Fase 2, a redução de bactérias se correlacionou melhor com turbidez remanescente. No estudo sobre de remoção de (oo)cistos de protozoários, 92% de 30 amostras não apresentaram os parasitos, no entanto, em duas amostras detectaram-se a presença de um oocisto de Cryptosporidium. Apesar de elevadas reduções de bactérias por FLDs, não houve amostras filtradas com ausência de coliformes, para tanto, fizeram-se testes com hipoclorito de sódio, que resultaram ausência de bactérias na água tratada. O controle por boia prolongou a carreira de filtração no regime intermitente e melhorou a turbidez filtrada no fluxo contínuo. O uso do acelerador de amadurecimento foi efetivo para eficiências dos FLDs apenas no fluxo intermitente. Dentre os modelos estudados, o FC apresentou melhores resultados em termos de eficiência e duração das carreiras de filtração. / The lack of drinking water is an aggravation affecting populations at the global and national levels and the small and isolated communities are the most susceptible to this vulnerability. These locations require decentralized solutions, such as the household slow sand filter (HSSF). In this context, in the present thesis is proposed the construction of a HSSF with PVC materials, of easy acquisition and simple assemble. In Phase 1 of the study, it was compared HSSFs with intermittent flow regime, with (FI) and without (FIS) water level control by float; and continuous, with (FC) and without (FCS) float, treating groundwater with kaolinite. Remaining turbidity, Escherichia coli reduction, ripening time and filtration run times were investigated to explore the effect of the float in the two regimes. In Phase 2 the acceleration of ripening was studied in both regimes, using as accelerator Opuntia cochenillifera cactus powder, treating natural water. Intermittent units were compared with (FIA) and without (FI) accelerator, and continuous units with (FCA) and without (FC) accelerator. In this phase, the reduction of total coliforms, dissolved oxygen consumption and removal of Giardia cysts and Cryptosporidium oocysts in addition to the variables considered in Phase 1 were also studied. In the two phases it was studied the correlation of operational variables (filtration rate, head loss divided by filter media thickness, time of operation, time after maintenance) with efficiencies for bacterial reduction and remaining turbidity. The cost of FLDs in PVC was estimated at around R$ 420.00. The results indicated that in Phase 1, FI had larger filtration runs than FIS, with no differences for the other variables. FC had turbidity remaining mean lower than FCS (1.24 ± 0.91 versus 1.90 ± 1.36 NTU). In Phase 2, FIA had a better efficiency to reduce E. coli (2.32 ± 0.79 versus 1.936 ± 0.61 log) and lower average remaining turbidity than FI, there were no differences in efficiencies (e.g. 2, 51 ± 0.60 and 2.60 ± 0.56 log of E. coli), however, FCA had shorter filtration runs than FC (33 ± 13 versus 60 ± 14 days). The variable head loss in the first 2 cm was the one with the highest correlation with E. coli reductions in Phase 1, while in Phase 2, the bacterial reduction correlated better with remaining turbidity. In the study on the removal of protozoa (oo)cysts, 92% of 30 samples did not present the parasites, however, in two samples the presence of a Cryptosporidium oocyst was detected. Despite high bacterial reductions by HSSFs, there were no filtered samples with absence of coliforms; therefore, sodium hypochlorite tests were performed, which resulted in no bacteria in the treated water. The float control extended the filtration run in the intermittent regime and improved the turbidity filtered in the continuous stream. The use of the ripening accelerator was effective for FLD efficiencies only in the intermittent flow. Between the studied models of filters, FC was the one with the better results of efficiencies and duration of filters run.
|
10 |
Development of electrospun nanofiber composites for point-of-use water treatmentPeter, Katherine T. 01 December 2016 (has links)
A range of chemical pollutants now contaminate drinking water sources and present a public health concern, including organic compounds, such as pharmaceuticals and pesticides, and both metalloids and heavy metals, such as arsenic and lead. Metalloids and heavy metals have been detected in private drinking water wells, which do not fall under federal drinking water regulations, as well as in urban tap water, due to the introduction of contamination to the drinking water distribution system. Further, many so-called “emerging organic contaminants,” which are present in drinking water sources at detectable levels but have unknown long-term health implications, do not fall under federal drinking water regulations. To protect the health of consumers, drinking water treatment at the point-of-use (POU) (i.e., the tap) is essential. Next-generation POU treatment technologies must require minimal energy inputs, be simple enough to permit broad application among different users, and be easily adaptable for removal of a wide range of pollutants.
Nanomaterials, such as carbon nanotubes and iron oxide nanoparticles, are ideal candidates for next-generation drinking water treatment, as they exhibit unique, high reactivity and necessitate small treatment units. However, concerns regarding water pressure requirements and nanomaterial release into the treated supply limit their application in traditional reactor designs. To bridge the gap between potential and practical application of nanomaterials, this study utilizes electrospinning to fabricate composite nanofiber filters that effectively deploy nanomaterials in drinking water treatment. In electrospinning, a high voltage draws a polymer precursor solution (which can contain nanomaterial additives, in the case of nanocomposites) from a needle to deposit a non-woven nanofiber filter on a collector surface.
Using electrospinning, we develop an optimized, macroporous carbon nanotube-carbon nanofiber composite that utilizes the sorption capacity of embedded carbon nanotubes, and achieves a key balance between material strength and reactivity towards organic pollutants. Additionally, via single-pot syntheses, we develop two optimized polymer-iron oxide composites for removal of heavy metal contamination by inclusion of iron oxide nanoparticles and either cationic or anionic surfactants in the electrospinning precursor solution. In hybrid materials that contain a well-retained quaternary ammonium surfactant (tetrabutylammonium bromide) and iron oxide nanoparticles, ion exchange sites and iron oxide sites are selective for chromate and arsenate removal, respectively. We demonstrated that a sulfonate surfactant, sodium dodecyl sulfate, acted as a removable porogen and an agent for surface segregation of iron oxide nanoparticles, thus enhancing composite performance for removal of lead, copper, and cadmium. Notably, nanoparticles embedded in composites exhibited comparable activity to freely dispersed nanoparticles. Collectively, the composites developed in this work represent a substantial advance towards the overlap of effective nanomaterial immobilization and utilization of nanomaterial reactivity. Outcomes of this work advance current knowledge of nanocomposite fabrication, and contribute to the responsible and effective deployment of nanomaterials in POU drinking water treatment.
|
Page generated in 0.0295 seconds