Spelling suggestions: "subject:"polipropileno aleado"" "subject:"polipropileno caleado""
1 |
Influência de polipropileno maleado no comportamento de fratura (EWF) de compósitos de polipropileno/fibra de vidro / Maleated polypropylene influence on fracture mechanics of polypropylene / glass fiber compositesBollini, Guilherme Silva 11 April 2012 (has links)
Made available in DSpace on 2016-06-02T19:12:29Z (GMT). No. of bitstreams: 1
5163.pdf: 11516846 bytes, checksum: 03f054efca1b0f8ca8ec44ede8d31fad (MD5)
Previous issue date: 2012-04-11 / Universidade Federal de Sao Carlos / Thermoplastic composites reinforced with short glass fibers, to be used in technical engineering applications, usually requires a good balance of properties, such as strength and tenacity. For the case of the composite of polypropylene reinforced with glass fibers, which presents a superior cost/mechanical performance when compared to other composites with matrices like polyamide and polyesters, high mechanical performance can only be achieved by an increase in fiber-polymer interfacial interaction, which is low due to the non-polar character of the PP matrix. This problem was solved by the adequate use of aminosilane coupling agent combined with an interfacial compatibilizer and its ideal content, which defines the balance between properties like strength and tenacity, still is a matter that needs further investigation. Therefore, the main goal of the present work was to evaluate the influence of maleated PP (PP-g-MAH) compatibilizer on short therm mechanical properties (tensile, flexural and impact strength) and on mechanical fracture mechanism, through the analysis of essential work of fracture (EWF), in composites of PP reinforced with equivalent fiber contents (30% in weight in the composite) of two types of glass fibers with different sizings, one compatible with matrices consisting of PP (GF968) and the other compatible with polar matrices such as polyamides (GF983). The tensile, flexural and impact strength analysis along with SEM microscopy, showed that the failure in these composites is due to achieving the maximum shear strength of the interface between the matrix and the PP-co-siloxane copolymer interphase. The results of EWF showed that the main contribution to the process of deforming energy dissipation it s attributed to the specific essential work of fracture (we), during the creation of new surfaces, associated to the mechanism of decoupling, pullout and fiber-polymer interface/interphase deformation. / Compósitos de termoplásticos reforçados com fibras de vidro curtas (TPRFVc), empregados em aplicações técnicas de engenharia, normalmente requerem um bom balanço de propriedades de rigidez, resistência e tenacidade. Para o caso do compósito de polipropileno reforçado com fibras de vidro curtas (PP/FV) o qual apresenta uma relação custo/desempenho mecânico superior em relação a outros compósitos de matrizes tais como poliamidas e poliésteres, alto desempenho mecânico só pôde ser assegurado a partir de um aumento da interação interfacial fibra-polímero que é baixa devido ao caráter apolar da matriz de PP. Este problema foi resolvido através do uso de adequado agente de acoplagem aminosilano combinado com um compatibilizante interfacial e, seu teor ideal, que define o equilíbrio das propriedades de rigidez e tenacidade, ainda é um tema que carece de investigação. Sendo assim, o principal objetivo deste trabalho foi o de avaliar a influência do teor do compatibilizante de PP maleado (PP-g-MAH) em propriedades mecânicas de curta duração (resistência à tração, flexão e impacto) e no mecanismo de fratura mecânica, através da análise de trabalho essencial de fratura (EWF), em compósitos de PP reforçado com teores equivalentes (30% em peso) de dois tipos de FV curta pré-tratada com encimagens distintas; uma compatível com matrizes de PP (FV968) e outra compatível com matrizes polares de poliamidas (FV983). A análise de propriedades de resistência à tração, flexão e ao impacto conjuntamente com microscopia MEV mostrou que a falha nestes compósitos se deve ao alcance da máxima resistência ao cisalhamento na interface matriz-interfase de copolímero de PP-co-siloxano. Os resultados da técnica de EWF indicam que a principal contribuição ao processo de dissipação de energia deformacional é atribuída ao trabalho essencial de fratura específico (we), durante a criação de novas superfícies, associado aos mecanismos de desacoplamento e arrancamento das fibras e de deformação da interface/interfase fibra-polímero.
|
Page generated in 0.0502 seconds