21 |
Studies On Conducting Polymer Microstructures : Electrochemical Supercapacitors, Sensors And ActuatorsPavan Kumar, K 07 1900 (has links) (PDF)
With the discovery of conductivity in doped polyacetylene (PA), a new era in synthetic metals has emerged by breaking the traditionally accepted view that polymers were always insulating. Conducting polymers are essentially characterized by the presence of conjugated bonding on the polymeric back bone, which facilitates the formation of polarons and bipolarons as charge carriers. Among the numerous conducting polymers synthesized to date, polypyrrole (PPy) is by far the most extensively studied because of prodigious number of applications owing to its facile polymerizability, environmental stability, high electrical conductivity, biocompatibility, and redox state dependent physico-chemical properties. Electrochemically prepared PPy is more interesting than the chemically prepared polymer because it adheres to the electrode surface and can be directly used for applications such as supercapacitors, electrochemical sensors, electromechanical actuators and drug delivery systems.
In quest for improvement in quality of the device performances in the mentioned applications, micro and nano structured polymeric materials which bring in large surface area are studied. Finding a simple and efficient method of synthesis is very important for producing devices of PPy microstructures. Till date, Hard and soft template methods are the most employed methods for synthesis of these structures. Soft template based electrochemical methods are better than hard template methods to grow clean PPy microstructures on electrode substrates as procedures for removal of hard templates after the growth of microstructures are very complex. As per the literature, there is no unique method available to grow PPy microstructures which can demonstrate several applications. Although gas bubble based soft template methods are exploited to grow conducting polymer microstructures of sizes in few hundreds of micrometers, studies on applications of the same are limited. Hence it is planned to develop procedures to grow microstructures that can be used in several applications. In the current work, PPy microstructures with high coverage densities are synthesized on various electrode substrates by soft template based electrochemical techniques.
Hollow, hemispherical and spherical PPy microstructures are developed by a two step method using electro generated hydrogen bubble templates on SS 304 electrodes. In the first step, Hydrogen bubbles are electro generated and stabilized on the electrode in the presence of β- naphthalene sulfonic acid (β-NSA). In the second step, Pyrrole is oxidised over the bubble template to form PPy microstructures. Microstructures (open and closed cups) of average size 15 μm are uniformly spread on the surface with a coverage density of 2.5×105 units /cm2.
Globular PPy microstructures are developed by a single step method using concomitantly electro generated oxygen bubble templates on SS 304 electrodes during electropolymerization. Microstructures of average size 4 μm are uniformly spread on the surface with a coverage density of 7×105 units/cm2.
Surfactant properties of Zwitterionic 4-(2-hydroxyethyl)-1-piperazine ethane sulfonic acid (HEPES) are exploited for the first time to grow conducting polymer microstructures. Ramekin shaped PPy microstructures are developed using HEPES as the surfactant to stabilize hydrogen bubble templates in a two step electrochemical synthesis method. Microramekins of size 100 µm are uniformly spread on the surface with a coverage density of 3000 units/cm2. Micropipettes and microhorns of PPy are synthesised by a single step electrochemical route using HEPES as a surfactant. Hollow micropipettes of length 7 µm with an opening of 200 nm at the top of the structure are observed. Similarly microhorn/celia structures are observed with length 10-15 µm. Microcelia are uniformly distributed over the surface with each structure having a diameter of 2 µm at the base to 150 nm at the tip. Growth mechanism based on contact angle of the reactant solution droplets on the substrate is proposed.
PPy microstructures are characterized by scanning electron microscopy, X-Ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, Raman Spectroscopy and UV-Visible spectroscopy to study morphology, ‘chemical bonding and structure’ , ‘defects and charge carriers’.
Applicability of the electrodes with PPy microstructures in supercapacitors is investigated by cyclic voltammetry, chronopotentiometry and electrical impedance spectroscopy. Electrodes developed by all the above methods demonstrated very good supercapacitance properties. Supercapacitor studies revealed very high specific capacitances (580, 915, 728 and 922 F/g,) and specific powers (20, 25, 13.89 and 15.91 kW/kg) for electrodes with PPy microstructures (H2 bubble based two step method, O2 bubble based single step method, HEPES stabilized H2 bubbble method and HEPES based microhorn/celia structures respectively). Supercapacitive behavior of all the electrodes is retained even after an extended charge-discharge cycling in excess of 1500 cycles.
Horseradish peroxidase entrapped, bowl shaped PPy microstructures are developed for H2O2 biosensing. Amperometric biosensor has a performance comparable to the sensors reported in the literature with high sensitivity value of 12.8 μA/(cm2.mM) in the range 1.0 mM to 10 mM. Glucose oxidase entrapped PPy amperometric biosensor is developed for Glucose sensing. Sensitivity of 1.29 mA/(cm2.mM) is observed for β-D-Glucose sensing in the 0.1 mM to 5.0 mM range while 58 μA/(cm2.mM) is observed in the 5.0 to 40 mM range. Potentiometric urea sensor with urease entrapped PPy microstructures on SS electrode is developed. It is able to sense urea in the micromolar ranges down to 0.1 μM. It represented an excellent performance with sensitivity of 27 mV/decade. Sensitivity in the micromolar range is 4.9 mV/(μM.cm2).
Drug encapsulation and delivery is successfully demonstrated by two actuation means (i) by electrochemical actuation, (ii) by actuation based on pH changes. Concepts are proved by delivering a fluorescent dye into neutral and acidic solutions. Drug delivery is confirmed by UV-Visible spectroscopy and Fluorescence microscopy.
Finally, Micro/nanostructures with Tangerine, Hollow globular (Pani Poori), Chip, Flake, Rose, Worm, Horn and Celia shapes are synthesized electrochemically and scanning electron microscopic studies are presented. Controlled growth of microstructures on lithographically patterned gold interdigital electrodes is demonstrated with a future goal of creating addressable microstructures.
The studies reported in the thesis provide an insight on various applications of PPy microstructures (supercapacitors, sensors and drug delivery systems) developed by a unique methodology based on electrochemically generated gas bubble templates.
|
22 |
Synthesis and Characterization of Pyrrole Based Adhesion Promoter Systems on Oxide SubstratesCai, Xuediao 24 January 2005 (has links) (PDF)
For grafting polypyrrole on oxidized surfaces, 3-substituted pyrrole alkyl phosphonic acids, 11-(pyrrol-3-yl undecyl) trimethoxysilanes and 1-substituted pyrrole alkyl organosilanes with different chain length were designed and successfully synthesized as adhesion promoters. These new derivatives were studied for their adsorption behavior on oxide substrates and chemical or electrochemical deposition of polypyrrole over modified oxide surface or electrodes. Several analytical techniques such as contact angle measurement, surface plasmon resonance spectroscopy (SPR), UV-VIS Spectroscopy, grazing incident FTIR, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and atomic force microscopy (AFM) were employed to characterize the adsorbed layers on different substrates. Contact angle measurement and ellipsometry data showed that high concentrations in apolar hydrocarbon solvent and long reaction times are sufficient to form tightly packed monolayer of 1-substituted pyrrole alkyl monochlorosilanes (PMCS) on substrates. Adsorption kinetics were studied by SPR and showed that the adsorption took place within a few seconds, then continuously increased and reached a plateau. The orientation of these synthesized monomers is investigated to be well-suited for use as adhesion promoter. CV-measurements showed that 3-substrated pyrrole derivatives had lower oxidation potential, whereas 1-substituted pyrrole derivatives had higher oxidation potential compared with pyrrole. Surface deposition of polypyrrole on the adhesion promoter modified (silane-modified and phosphonic acid-modified) substrates by chemical and electrochemical polymerization were investigated. PPy films formed on the modified surfaces by surface chemical polymerization showed a better adhesion compared to those on the unmodified surfaces. The morphology of PPy films was influenced by the alkyl chain length of the adhesion promoter and the deposition condition, such as choice of oxidant and solvent. The thickness of the resulting PPy films were controlled by the polymerization conditions, such as choice of solvent, deposition time, pyrrole to oxidant ratio and monomer concentration. The thickness of the deposited PPy film was estimated in the range of 10-400 nm by AFM and ellipsometry. The electrical properties were studied by current-voltage (j-V) measurement. Temperature dependence of j-V characteristics of Si/SiO2/PPy/PMCS-16/Al films revealed that the current increases with temperature, the film shows a typical semiconductor behavior. The use of these adhesion promoters modified electrode for electrochemical polymerization resulted in adhesive polypyrrole films.Also the 3-substituted pyrrole phosphonic acids were found to be homo-and co-polymerizable (with pyrrole) under chemical methods. TGA showed that homopolymers are less stable than polypyrrole due to the 3-substitution. he homopolymer of 3-substituted phosphonic acid derivatives of pyrrole is soluble. Films coated from the MeOH solution of homopolymer could be successfully used as humidity sensors. It is observed that the resistivity of the 3-substituted homopolypyrrole sensors increases and capacitance decreases during exposure to humid air. The polypyrrole films obtained by surface chemical polymerization was also used as humidity sensors.
|
23 |
Synthesis and Characterization of Pyrrole Based Adhesion Promoter Systems on Oxide SubstratesCai, Xuediao 09 February 2005 (has links)
For grafting polypyrrole on oxidized surfaces, 3-substituted pyrrole alkyl phosphonic acids, 11-(pyrrol-3-yl undecyl) trimethoxysilanes and 1-substituted pyrrole alkyl organosilanes with different chain length were designed and successfully synthesized as adhesion promoters. These new derivatives were studied for their adsorption behavior on oxide substrates and chemical or electrochemical deposition of polypyrrole over modified oxide surface or electrodes. Several analytical techniques such as contact angle measurement, surface plasmon resonance spectroscopy (SPR), UV-VIS Spectroscopy, grazing incident FTIR, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and atomic force microscopy (AFM) were employed to characterize the adsorbed layers on different substrates. Contact angle measurement and ellipsometry data showed that high concentrations in apolar hydrocarbon solvent and long reaction times are sufficient to form tightly packed monolayer of 1-substituted pyrrole alkyl monochlorosilanes (PMCS) on substrates. Adsorption kinetics were studied by SPR and showed that the adsorption took place within a few seconds, then continuously increased and reached a plateau. The orientation of these synthesized monomers is investigated to be well-suited for use as adhesion promoter. CV-measurements showed that 3-substrated pyrrole derivatives had lower oxidation potential, whereas 1-substituted pyrrole derivatives had higher oxidation potential compared with pyrrole. Surface deposition of polypyrrole on the adhesion promoter modified (silane-modified and phosphonic acid-modified) substrates by chemical and electrochemical polymerization were investigated. PPy films formed on the modified surfaces by surface chemical polymerization showed a better adhesion compared to those on the unmodified surfaces. The morphology of PPy films was influenced by the alkyl chain length of the adhesion promoter and the deposition condition, such as choice of oxidant and solvent. The thickness of the resulting PPy films were controlled by the polymerization conditions, such as choice of solvent, deposition time, pyrrole to oxidant ratio and monomer concentration. The thickness of the deposited PPy film was estimated in the range of 10-400 nm by AFM and ellipsometry. The electrical properties were studied by current-voltage (j-V) measurement. Temperature dependence of j-V characteristics of Si/SiO2/PPy/PMCS-16/Al films revealed that the current increases with temperature, the film shows a typical semiconductor behavior. The use of these adhesion promoters modified electrode for electrochemical polymerization resulted in adhesive polypyrrole films.Also the 3-substituted pyrrole phosphonic acids were found to be homo-and co-polymerizable (with pyrrole) under chemical methods. TGA showed that homopolymers are less stable than polypyrrole due to the 3-substitution. he homopolymer of 3-substituted phosphonic acid derivatives of pyrrole is soluble. Films coated from the MeOH solution of homopolymer could be successfully used as humidity sensors. It is observed that the resistivity of the 3-substituted homopolypyrrole sensors increases and capacitance decreases during exposure to humid air. The polypyrrole films obtained by surface chemical polymerization was also used as humidity sensors.
|
24 |
Electroanalytical studiesTsai, Yu-Chen January 2001 (has links)
No description available.
|
25 |
Modification de surface des nanotubes de carbone par un polymère conducteurélectrogénéré pour la réalisation de nanocomposites multifonctionnelsBozlar, Michael 07 December 2009 (has links) (PDF)
Du fait de leurs propriétés intrinsèques exceptionnelles, les nanotubes de carbone (CNTs) sont des matériaux bien adaptés pour renforcer les polymères thermodurcissables. Le nanocomposite multifonctionnel ainsi obtenu possède des propriétés électriques, thermiques et mécaniques sensiblement meilleures que le polymère seul, ce qui lui procure de nombreuses applications potentielles, et tout particulièrement dans le domaine de l'électronique ou de l'aéronautique. Le but de cette thèse de doctorat est orienté suivant deux axes. Il s'agit dans un premier temps de mettre au point un matériau nanocomposite avec des propriétés multifonctionnelles à partir de techniques d'élaborations efficaces. Puis dans un second temps, l'objectif consiste à proposer des alternatives permettant d'améliorer ces propriétés. Le premier chapitre de cette thèse établit une revue de l'état de l'art au sujet des matériaux qui ont été étudiés au cours de ce travail de recherche. Parmi ces matériaux, nous pouvons citer tout particulièrement les CNTs, les renforts hybrides nano/micrométriques constitués de CNTs et d'alumine, les polymères conducteurs électroniques et les polymères thermodurcissables. Il s'agit plus précisément de présenter pour chaque matériau les techniques d'élaboration, leurs structures et finalement leurs propriétés. Dans la seconde partie du manuscrit, nous décrivons en premier lieu les procédés d'élaboration permettant d'obtenir des nanocomposites conformes aux normes internationales. Ensuite, nous présentons les différentes techniques de caractérisation de ces nanomatériaux. Il s'agit notamment de déterminer les phénomènes de transports électriques et thermiques. Des techniques d'analyses supplémentaires permettent de mieux comprendre la structure des matériaux obtenus dans une gamme d'échelle allant de l'état macroscopique à l'atomique. Ainsi, nous avons eu recours à l'utilisation de la microscopie électronique à balayage et en transmission, et aussi la microscopie à force atomique (AFM). Différentes études spectroscopiques de types : Raman, perte d'énergie des électrons (EELS), photoélectrons X (XPS) fournissent des informations additionnelles sur ces matériaux. Les résultats obtenus sur ces nanocomposites en matière de transports électronique et thermique montrent que certaines améliorations sont nécessaires pour optimiser les propriétés multifonctionnelles de ces nanomatériaux. Nous avons concentré nos efforts sur les phénomènes physicochimiques à l'interface matrice/renfort. Par conséquent, nous avons décidé de modifier la surface des CNTs afin de favoriser la cohésion matrice/renfort, mais aussi et surtout, pour diminuer les résistances de contacts entre les CNTs lorsqu'ils sont distribués aléatoirement dans une matrice polymère. Le dernier chapitre de la thèse s'articule autour de la fonctionnalisation des CNTs par un polymère conducteur électronique (ECP). Dans un premier temps, nous avons mis au point des techniques électrochimiques permettant de déposer une couche homogène d'épaisseur nanométrique d'ECP à la surface des CNTs. Ce polymère conducteur et en même temps biocompatible est le polypyrrole (Ppy). La précision et l'efficacité de notre démarche sont démontrées par les différents outils de caractérisation, et tout particulièrement grâce à la microscopie électronique en transmission à haute résolution. Des études supplémentaires par AFM couplé à un résiscope ont montré l'évolution de la résistance électrique d'hybrides CNT-Ppy plus ou moins isolés. Dans une seconde partie, nous avons mis au point une méthode permettant de contrôler finement l'épaisseur de Ppy déposé à la surface des CNTs.
|
26 |
Characterization and applications of affinity based surface modification of polypyrroleNickels, Jonathan D. 06 November 2012 (has links)
I present the characterization and applications of a technique to modify the surface of the conducting polymer, polypyrrole, via a novel, 12-amino acid peptide, THRTSTLDYFVI (T59). This peptide non-covalently binds to the chlorine-doped conducting polymer polypyrrole, allowing it to be used in tethering molecules to polypyrrole for uses such as a scaffold for the treatment of peripheral nerve injury or in surface coatings of neural recording electrodes. I have quantified the binding of this peptide as well as investigating the mechanism of the binding. The equilibrium constant of the binding interaction of PPyCl and the T59 peptide was found through a binding assay to be 92.6 nM, and the off rate was found to be approximately 2.49 s⁻¹, via AFM force spectroscopy. The maximum observed surface density of the peptide was 1.27 +/- 0.42 femtomoles/cm². Furthermore, my studies suggest that the eighth residue, aspartic acid, is the main contributor of the binding, by interacting with the partially positive charge on the backbone of polypyrrole. I have demonstrated practical applications of the technique in the successful modification of a PPyCl surface with the laminin fragment IKVAV, as well as the so-called stealth molecule poly(ethylene glycol) (PEG). A subcutaneous implant study was performed to confirm that the T59 peptide did not induce any significant reaction in vivo. Significantly, the conductivity of a PPyCl surface was unaffected by this surface modification technique. / text
|
27 |
Nanocomposites of Cellulose and Conducting Polymer for Electrical Energy StorageOlsson, Henrik January 2014 (has links)
The world’s increased energy storage demand, as well as the environmental concerns related to the combustion of fossil fuels, has triggered a transition to intermittent renewable energy sources as well as to electrical and hybrid vehicles. Current day rechargeable batteries are, due to the invention and development of lithium ion batteries, technologically well positioned to answer to some of these demands. Conventional batteries, however, utilize inorganic materials of limited supply that require large amounts of energy during refining and processing. The materials also add a significant cost to the final product, making the rechargeable batteries less attractive for large scale applications. During the last decade, significant efforts have been made to find suitable organic matter based electrode materials that can replace the inorganic materials. One class of organic materials that can be used for electrical energy storage, or be included as components in organic matter based energy storage systems, is conducting polymers. The aim of this thesis was to investigate the possibilities and limitations of using the conducting polymer polypyrrole in energy storage applications. The polymer was synthesized onto cellulose extracted from the Cladophora sp. algae, and the result was a flexible composite material. Symmetrical energy storage devices constructed with the composite material were shown to exhibit a pseudocapacitive behavior. The resistance in the cells was investigated and was found to scale linearly with the separator thickness. Cells could be cycled for 4,000 cycles without significant capacitance loss and cells that were overcharged to 1.8 V cell potential, were found to be protected by a resistive potential drop. Devices were constructed as proof-of-concept and were used to power a remote control and a digital thermometer. The self-discharge in polypyrrole was studied extensively. It was found that oxygen was responsible for the oxidation of the reduced electrode, while the positive electrode self-discharged due to a faradaic reaction. Through spectroscopy and the temperature dependence of the self-discharge, it was suggested that the self-discharge of oxidized polypyrrole is linked to the degradation at high potentials, commonly referred to as overoxidation.
|
28 |
Elektrochemo- und mikromechanisches Verhalten elektronisch leitfähiger PolymereRoemer, Mario. Unknown Date (has links)
Universiẗat, Diss., 2004--Kassel.
|
29 |
Eletropolimerização de pirrol sobre a liga de alumínio 1100Castagno, Katia Regina Lemos January 2007 (has links)
Filmes de polipirrol (PPy) foram eletropolimerizados potenciostáticamente sobre a liga de alumínio 1100, após ativação galvanostática, em presença de diferentes dopantes a fim de avaliar a sua utilização como revestimento protetor à corrosão. O método de síntese, o dopante e o tipo de ácido utilizado na eletropolimerização de polipirrol influenciam no desempenho do filme na proteção da liga. Os filmes de PPy sintetizados potenciostáticamente a 1,0 V, até carga de 1,0 C, em solução contendo pirrol (Py) 0,4 mol L-1, dodecilbenzenosulfonato de sódio (SDBS) 0,1 mol L-1 e ácido oxálico (H2C2O4) 0,1 mol L-1 apresentaram maior resistência de polarização. Os filmes de PPy sintetizados na mesma condição anterior e em presença das argilas montmorilonita sódica (MT-Na) ou montmorilonita modificada (MT-M), nas concentrações de 1 e 5% p/p, resultaram em material nanocompósito. Os filmes polipirrol/montmorilonita (PPy/MT) 1% em peso apresentaram melhor desempenho na proteção à corrosão da liga de alumínio Os valores de condutividade obtidos para os filmes de PPy e PPy/MT sintetizados pelo método eletroquímico utilizado são de 2-5 ordens maiores que os valores obtidos por síntese química. A partir de planejamento fatorial estatístico foi determinado que filmes de PPy sintetizados eletroquimicamente a 1 V até 1,5C em solução de Py 0,2 mol L-1, H2C2O4 0,1 mol L-1 e tungstato de sódio (Na2WO4) 0,05 mol L-1 propiciam maior resistência à corrosão da liga em meio de cloreto, devido à ação dopante e inibidora do ânion tungstato. / Polypyrrole (PPy) was deposited potentiostatically on aluminum alloy Al- 1100 after galvanostatic activation pretreatment, in the presence of different dopants, in order to obtain a protective film against corrosion. It has been shown that the corrosion resistance of the PPy recovered Al-1100 is strongly dependent on the surface pretreatment, pyrrole (Py) concentration and electropolimerization process. The higher polarization resistance of the recovered Al-1100 alloy was obtained for PPy films synthesized potentiostatically at 1.00 V, in a 0.1 mol L-1 dodecylbenzene sulfonate (SDBS) and 0.1 mol L-1 oxalic acid (H2C2O4) solution containing 0.4 mol L-1 Py. When Polypyrrole films are synthesized in the same conditions as above in the presence of 1 and 5% w/w of either Na+- Montmorillonite (MT-Na), or modified-Montmorillonite (MT-M), a nonocomposite material is obtained. It was observed that Al110 recovered with films of PPy/MTM 1% gives the higher corrosion protection. Moreover, the conductivity values obtained for the electrochemically synthesized PPy/SDBS and PPy/MT films are 2 to 5 orders of magnitude higher than those obtained by the chemical synthesis. By employing statistical factorial design it has been evidenced that the film PPy/OXA/W synthesized at 1.0 V, 5.0 C in 0.2 mol L-1 pyrrole, 0.1 mol L-1 H2C2O4 and 0.05 mol L-1 Na2WO4 solution, presents the best performance against corrosion in chloride media. Under these conditions, the tungstate anion plays the role of both dopant and inhibitor agent.
|
30 |
Eletropolimerização de pirrol sobre a liga de alumínio 1100Castagno, Katia Regina Lemos January 2007 (has links)
Filmes de polipirrol (PPy) foram eletropolimerizados potenciostáticamente sobre a liga de alumínio 1100, após ativação galvanostática, em presença de diferentes dopantes a fim de avaliar a sua utilização como revestimento protetor à corrosão. O método de síntese, o dopante e o tipo de ácido utilizado na eletropolimerização de polipirrol influenciam no desempenho do filme na proteção da liga. Os filmes de PPy sintetizados potenciostáticamente a 1,0 V, até carga de 1,0 C, em solução contendo pirrol (Py) 0,4 mol L-1, dodecilbenzenosulfonato de sódio (SDBS) 0,1 mol L-1 e ácido oxálico (H2C2O4) 0,1 mol L-1 apresentaram maior resistência de polarização. Os filmes de PPy sintetizados na mesma condição anterior e em presença das argilas montmorilonita sódica (MT-Na) ou montmorilonita modificada (MT-M), nas concentrações de 1 e 5% p/p, resultaram em material nanocompósito. Os filmes polipirrol/montmorilonita (PPy/MT) 1% em peso apresentaram melhor desempenho na proteção à corrosão da liga de alumínio Os valores de condutividade obtidos para os filmes de PPy e PPy/MT sintetizados pelo método eletroquímico utilizado são de 2-5 ordens maiores que os valores obtidos por síntese química. A partir de planejamento fatorial estatístico foi determinado que filmes de PPy sintetizados eletroquimicamente a 1 V até 1,5C em solução de Py 0,2 mol L-1, H2C2O4 0,1 mol L-1 e tungstato de sódio (Na2WO4) 0,05 mol L-1 propiciam maior resistência à corrosão da liga em meio de cloreto, devido à ação dopante e inibidora do ânion tungstato. / Polypyrrole (PPy) was deposited potentiostatically on aluminum alloy Al- 1100 after galvanostatic activation pretreatment, in the presence of different dopants, in order to obtain a protective film against corrosion. It has been shown that the corrosion resistance of the PPy recovered Al-1100 is strongly dependent on the surface pretreatment, pyrrole (Py) concentration and electropolimerization process. The higher polarization resistance of the recovered Al-1100 alloy was obtained for PPy films synthesized potentiostatically at 1.00 V, in a 0.1 mol L-1 dodecylbenzene sulfonate (SDBS) and 0.1 mol L-1 oxalic acid (H2C2O4) solution containing 0.4 mol L-1 Py. When Polypyrrole films are synthesized in the same conditions as above in the presence of 1 and 5% w/w of either Na+- Montmorillonite (MT-Na), or modified-Montmorillonite (MT-M), a nonocomposite material is obtained. It was observed that Al110 recovered with films of PPy/MTM 1% gives the higher corrosion protection. Moreover, the conductivity values obtained for the electrochemically synthesized PPy/SDBS and PPy/MT films are 2 to 5 orders of magnitude higher than those obtained by the chemical synthesis. By employing statistical factorial design it has been evidenced that the film PPy/OXA/W synthesized at 1.0 V, 5.0 C in 0.2 mol L-1 pyrrole, 0.1 mol L-1 H2C2O4 and 0.05 mol L-1 Na2WO4 solution, presents the best performance against corrosion in chloride media. Under these conditions, the tungstate anion plays the role of both dopant and inhibitor agent.
|
Page generated in 0.0162 seconds