Spelling suggestions: "subject:"1population balance"" "subject:"1population alance""
41 |
Scale-up of Emulsion Polymerization Process : impact of changing characteristic times / Scale-up de la polymérisation en émulsion : l’influence du changement de temps caractéristiquesAriafar, Solmaz 10 November 2016 (has links)
Un système consistant d'une simulation de mécanique des fluides numérique (MFN) couplée à un modèle de bilan de population (PBM) est développé afin d'étudier l'effet des paramètres variés sur la performance d'un procédé de polymérisation en émulsion qui conduit à la peoduction des particules de polymère dans un milieu aqueux continu.Comme une grande gamme des produits polymériques, des latexes sont les « produits par processus » (products-by-process), et leurs propriétés sont déterminés pendant la polymérisation. LA distribution de la taille des particules (PSD) est une des plus importants paramètres qui influence la qualité finale de latex. La modélisation d'évolution du PSD est généralement réalisée par l'addition un ensemble des PBEs au modèle cinétique. Le PBE fournit un moyen d'étudier la contribution des différents phénomènes dans l'évolution du PSD, comme la nucléation, la croissance des particules par la polymérisation, et la coagulation des particules à cause du mouvement brownien ou le mouvement du fluide (la coagulation Perikinetic et Orthokinetic, respectivement).Afin d'évaluer l'impact du mélange non homogène et les paramètres physiques du système sur l'évolution du PSD du latex, la simulation transitoire d'écoulement à été réalisé avec l'aide d'un progiciel commercial de MFN (Fluent® 15.0) pour munir dans chaque pas du temps, les concentrations locales des espèces ioniques (pour déterminer le taux de la coagulation Perikinetic modelé par le modèle de DLVO) ainsi que certains paramètres hydrodynamiques comme le taux de dissipation de la turbulence et le taux de cisaillement (afin de déterminer le taux de la coagulation Orthokinetic). Cette information est appliquée simultanément par le module complémentaire de PBM dans Fluent pour calculer le PSD pour le prochain pas du temps ; ainsi, un couplage complet entre le MFN et le PBM est assuré / A framework, consisting of a computational fluid dynamics (CFD) simulation model coupled to a population balance model (PBM) is developed to study the effect of various parameters on the performance of an emulsion polymerization process which leads to the production of a fine dispersion of polymer particles in a continuous aqueous medium.Like most polymer products, latexes are “products-by-process”, whose main properties are determined during polymerization. One of the main parameters influencing the final quality of the latexes is the particle size distribution (PSD). Modeling the evolution of PSD is usually accomplished through the addition of a set of PBEs to the kinetic model. PBE provides a means of considering the contribution of different phenomena in the PSD evolution, being nucleation, growth of polymer particles by polymerization, and coagulation of particles due to brownian or fluid motion (Perikinetic and Orthokinetic coagulation, respectively).To assess the impact of nonhomogeneous mixing and physical parameters of the system on the evolution of the latex PSD, the transient simulation of flow was performed with the aid of a commercial CFD Package (Fluent® 15.0) to provide in each time step, the local concentrations of ionic species (to determine the rate of perikinetic coagulation modeled by DLVO model) and certain hydrodynamic parameters such as turbulence dissipation rate and shear rate (to determine the rate of orthokinetic coagulation). This information is applied simultaneously by the PBE add-on module of Fluent to calculate the PSD for the next time step; thus a complete coupling between CFD and PBM is assured
|
42 |
Aplicação de modelos cinético e energético para análise da fragmentação ultrafina de partículas de calcário e quartzo em moinho planetário de bolasSANTOS, Juliano Barbosa dos 12 May 2016 (has links)
Submitted by Rafael Santana (rafael.silvasantana@ufpe.br) on 2017-07-10T18:48:53Z
No. of bitstreams: 2
license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5)
Dissertação completa.pdf: 8076647 bytes, checksum: 5dc16e9ca5f10026afed3fda08fda16b (MD5) / Made available in DSpace on 2017-07-10T18:48:53Z (GMT). No. of bitstreams: 2
license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5)
Dissertação completa.pdf: 8076647 bytes, checksum: 5dc16e9ca5f10026afed3fda08fda16b (MD5)
Previous issue date: 2016-05-12 / Minerais industriais em faixas ultrafinas (< 10 μm) têm suas propriedades potencializadas em
relação ao mesmo mineral com maior granulometria. Os materiais ultrafinos são utilizados em
diversos seguimentos industriais; por exemplo: materiais cerâmicos, papel e celulose, fármacos,
polímeros e tintas. A produção de ultrafinos ocorre em moinhos de alta energia. Dentre estes, o
moinho planetário de bolas destaca-se pelas altas taxas de redução de tamanho e pelo fato de
poderem ser alimentados via seco ou via úmido em regime contínuo (escala industrial) ou por
batelada. A produção de ultrafinos é limitada pelo consumo de energia e pela necessidade de
controle das condições operacionais, tamanho, morfologia e composição das partículas. Para
otimização das variáveis do processo, usam-se ferramentas computacionais embasadas em
modelos matemáticos, tais como os modelos de balanço populacional (MBP), dada pela
equação da moagem por batelada, e modelos energéticos. Este trabalho teve por objetivo
estudar modelos cinético e energéticos, sendo o primeiro uma solução analítica da equação da
moagem por batelada utilizado para descrever as distribuições de tamanhos de partículas, e o
segundo dado pela relação energia-tamanho, que prevê uma taxa de redução de tamanho
ilimitada, e pela relação tempo-tamanho, que está fundamentada na taxa de moagem () e no
limite de moagem. Os modelos foram aplicados em duas centenas de curvas granulométricas
resultantes de ensaios de moagem executados anteriormente em alíquotas de calcário e quartzo
(duas procedências) com massa e granulometria controladas. Os tempos de moagem variaram
de 2 a 960 minutos com velocidades de revolução de 100 a 300 rpm. Os ajustes dos modelos
cinético e energéticos foram avaliados considerando os seguintes fatores: coeficiente de
determinação (R2), erro padrão (EP), erro de ajuste () e índice de dependência (ID). O modelo
cinético apresentou, para a maioria das condições de moagem testadas, grande incerteza
associada a alguns de seus parâmetros ( > 10%), tornando os ajustes insatisfatórios segundo
os critérios utilizados. Os fatores de avaliação para o modelo cinético só foram adequados para
o quartzo de uma procedência, na faixa de 38x75 μm, satisfazendo a condição de compensação
estabelecida. No caso dos modelos energéticos, os ajustes obtidos para a relação energiatamanho
foram melhores para aquelas situações em que os diâmetros característicos não
apresentaram uma estabilização em seu decrescimento. Por sua vez, a relação tempo-tamanho
mostrou ajustes compatíveis com as situações em que foi observado um estado estático de
decrescimento dos diâmetros característicos, atingindo o limite de moagem. A partir dos ajustes
da relação tempo-tamanho foi possível determinar uma constante k’ que caracterizasse a
resistência à fragmentação do material em função das condições de moagem estudadas. Os
valores dessa constante mostraram que materiais mais resistentes à fragmentação possuem os
menores valores de k’, que variaram entre 0,96 e 2,6 g/J para o calcário e entre 0,06 a 0,53 g/J
para o quartzo. Concluiu-se, que o modelo cinético foi incompatível com a moagem ultrafina,
devida a presença de eventos significativos de aglomeração e interações mecânicas
multipartículas, confirmados pela variação do índice de uniformidade () com o tempo de
moagem. Os modelos energéticos se complementam na descrição dos resultados experimentais.
Logo um modelo intermediário que considere uma taxa de redução de tamanho como uma
função potência, com um expoente e um parâmetro (l) que represente o limite de moagem,
seja o mais recomendado para a representação dos processos de moagem ultrafina de minerais
industriais. / Industrial minerals in ultrafine ranges (< 10 μm) have their properties potentiated compared to
the same mineral with larger particle size. The ultrafine materials are used in several industries;
for example, ceramics, paper and cellulose, pharmaceuticals, polymers and paints. The
production of ultrafine occurs in high energy mills. Among these mills, the planetary ball mill
stand out by high rates and can be fed dry or wet in continuous (industrial scale) or batch
operation. The production of ultrafine is limited by the energy consumption and the need to
control of the operating conditions, size, morphology and composition of the particles.
Computational tools based on mathematical models are used in the optimization and control of
process variables, such as the population balance models (MBP), given by equation milling
batch, and energetic models. This work has as objective to study kinetic and energetic models,
the first is a analytical solution for the batch grinding equation used to describe particle size
distributions; the second given by the energy-size relations, which predict a size reduction rate
unlimited, and by the time-size relations, which are based on the milling rate () and grinding
limit. The models were applied to two hundred of particle sizes distributions curves resulting
from grinding tests performed previously in aliquots of limestone and quartz (two origins) with
control of mass and particle size. The milling times range 2 - 960 min with revolution speeds
of 100 to 300 rpm. The fits of the kinetic and energetic models were evaluated considering the
following factors: coefficient of determination (R2), standard error (SE), fit error (ε) and
dependency index (ID). The kinetic model showed uncertainty associated with some of its
parameters (ε > 10%) for most of the grinding conditions tested, resulting in unsatisfactory fits
to the criteria used. The evaluation factors for the kinetic model were only suitable for one
quartz, in the range of 38x75 μm satisfying the compensation condition. In the case of energetic
models, the fits to the energy-size relation were better for those situations where the
characteristic diameters did not show a stabilization in its decrease. On the other hand, the sizetime
relation shown compatible fits with the situation where was observed a decrease static
state of the characteristic diameters reaching the grinding limit. From the fits of the time-size
relation was possible to determine a constant ′ that characterizes the resistance to
fragmentation of the material depending on the grinding conditions studied. The values of this
constant showed that materials more resistant to fragmentation have the smaller ′ values,
ranging between 0.96 and 2.6 g/J for the limestone and from 0,06 to 0.53 g/J to quartz. It was
concluded that the kinetic model was incompatible with ultrafine grinding, due to the presence
of significant events of multi-particle interactions and agglomeration, which was confirmed by
variation in the uniformity index (′) in milling time function. Energetic models complemented
each other for description of the experimental results. Ready an intermediate model which
consider a size reduction rate as a power function with an exponent η and a parameter (l)
representing the grinding limit is the most recommended for the representation of the ultrafine
grinding processes of industrial minerals.
|
43 |
Numerical Simulations of Metal Recovery for Battery Recycling / Numeriska Simuleringar av Metallåtervinning för BatteriåtervinningÖlander, Morgan January 2023 (has links)
Den pågående elektrifieringen av transport och samhälle kräver utveckling av nya metoder för återvinning av batterier. Hydrometallurgi som fokuserar på selektiv kristallisation av metaller är ett intressant alternativ för dessa ändamål. Dessa system kan studeras genom modellering och simulering. Många matematiska modeller finns tillgängliga för att beskriva de olika involverade processerna i kristallisationen av metaller. Dessa processer inkluderar övermättnad, nukleation, kristalltillväxt och aggregation. Denna rapport sammanställer ett antal av de tillgängliga matematiska modellerna och presenterar ett numeriskt tillvägagångssätt för modellering av den tidsberoende nummerdensiteten av partiklar genom en populationsbalansekvation. Populationsbalansen kan lösas med olika metoder såsom momentmetoden och metoden av viktade residualer. Här löses ekvationen genom diskretisering. Diskretisering av den inre koordinaten i ett flertal längdintervall möjliggör simulering av partikel-storleksfördelningen som en funktion av tid. Det numeriska tillvägagångssättet applicerades på bariumsulfatutfällning i en perfekt blandad satsreaktor och två- och tre-dimensionella T-mixer-system, såväl som en perfekt blandad satsreaktor för förträngningskristallisation av nickelsulfat med groddning. Den simulerade storleksfördelningens placering visade sig ha bra överenstämmelse med experimentell data vid låga Reynolds-tal. Här undersöktes även påverkan av en mängd parametrar såsom diskretisering, aggregation och magnituden av diffusion. Aggregation hade en märkbar inverkan på välblandade system. Inverkan av aggregation i diffusions-kontrollerade system med kort retentionstid var låg. Diffusionsmagnituden hade liten påverkan på den normaliserade distributionen men större på det totala antalet partiklar. / The currently ongoing electrification of society and transport necessitates the development of novel methods for battery recycling. Hydrometallurgy with a focus on selective metal crystallisation is an interesting prospect to these ends. The resource recovery systems of interest can be studied through simulation where many mathematical models are available to describe the varying processes involved. These processes include supersaturation generation, nucleation, growth and aggregation. This work compiles some of these mathematical models and presents a numerical approach for the modelling of the time-dependent particle number density with a population balance equation. The population balance equation can be solved using a variety of different methods such as method of moments and method of weighted residuals. Here, the balance equation was solved by discretisation. Discretising the inner coordinate (crystal length) into a number of length intervals allows for the particle size distribution to be modelled as a function of time for various crystallisation systems. The framework was successfully applied to barium sulphate precipitation in a perfectly mixed batch reactor and two- and three-dimensional T-mixer systems, as well as a seeded perfectly mixed nickel sulphate anti-solvent crystallisation system. The simulated size distribution showed promising similarity to experimental data at low Reynolds number. The influence of a variety of parameters such as aggregation and magnitude of diffusion was investigated. Aggregation had a significant impact on well-mixed systems increasing with retention time. The impact of aggregation on diffusion-controlled systems with low retention time was low. The magnitude of diffusion had little impact on the particle size distribution of the crystal population but a large impact on the total number of crystals.
|
44 |
PROCESS INTENSIFICATION THROUGH CONTROL, OPTIMIZATION, AND DIGITALIZATION OF CRYSTALLIZATION SYSTEMSWei-Lee Wu (13960512) 14 October 2022 (has links)
<p> </p>
<p>Crystallization is a purity and particle control unit operation commonly used in industries such as pharmaceuticals, agrochemicals, and energetics. Often, the active ingredient’s crystal mean size, polymorphic form, morphology, and distribution can impact the critical quality attributes of the final product. The active ingredient typically goes through a series of process development iterations to optimize and scale-up production to reach production scale. Guided by the FDA, the paradigm shift towards continuous processing and crystallization has shown benefits in introducing cheaper and greener technologies and relieving drawbacks of batch processing. To achieve successful batch scale-up or robust continuous crystallization design, process intensification of unit operations, crystallization techniques, and utilizing data driven approaches are effective in designing optimal process parameters and achieving target quality attributes. </p>
<p>In this thesis, a collection or toolbox of various process intensification techniques was developed to aid in control, optimization, and digitalization of crystallization processes. The first technique involves developing a novel control algorithm to control agrochemical crystals of high aspect ratio to improve the efficiency of downstream processes (filtration, washing, and drying). The second technique involves the further improvement of the first technique through digitalization of the crystallization process to perform simulated optimization and obtain a more nominal operating profile while reducing material consumption and experimentation time. The third method involves developing a calibration procedure and framework for in-line video microscopy. After a quick calibration, the in-line video microscopy can provide accurate real-time measurements to allow for future control capabilities and improve data scarcity in crystallization processes. The last technique addresses the need for polymorphic control and process longevity for continuous tubular crystallizers. Through a sequential stirred tank and tubular crystallizer experimental setup, the control of polymorphism, particle mean size, and size distribution were characterized. Each part of this thesis highlights the importance and benefits of process intensification by creating a wholistic process intensification framework coupled with novel equipment, array of PAT tools, feedback control, and model-based digital design.</p>
|
45 |
PROCESS INTENSIFICATION TECHNIQUES FOR COMBINED COOLING & ANTISOLVENT CRYSTALLIZATION OF DRUG SUBSTANCESShivani A Kshirsagar (11000124) 14 October 2022 (has links)
<p>Crystallization is a key solid-liquid separation and purification technique used in pharmaceutical industry. Some of the critical quality attributes (CQAs) of a product from crystallization process include crystal size distribution (CSD), purity, polymorphic form, morphology, etc. Different size and polymorphs of a drug substance may have different dissolution profiles and different bioavailability, which can have adverse effect on human health. Therefore, it is important to design and control crystallization process to meet product CQAs. In recent years, drug substances are becoming more complex, often being heat sensitive, which may limit the temperature that can be used in the crystallization step. Consequently, the traditional cooling only crystallization may not be well suited to recover the high value drug substances. For these systems, antisolvent crystallization is typically employed to improve the yield. On the other hand, the solvent composition can significantly impact the polymorphic outcome. Therefore, designing combined cooling and antisolvent crystallization (CCAC) processes to solve the challenges of active pharmaceutical ingredient (API) crystallization in a highly regulated environment is a complex engineering problem. </p>
<p>With rising energy costs and intense price competition from generic pharmaceutical companies, the pharmaceutical industry is looking for ways to reduce the cost of manufacturing via process intensification (PI). This thesis focuses on different PI techniques for CCAC of drug substances. Continuous or smart manufacturing is gaining popularity due to its potential to lower the cost of manufacturing while maintaining consistent quality. Continuous crystallization is an important link in the continuous manufacturing process. The first part of the thesis shows PI of a commercial drug substance, Atorvastatin calcium (ASC) for target polymorph development via continuous CCAC using an oscillatory baffled crystallizer (OBC). An existing batch CCAC process for ASC was compared with the continuous CCAC in OBC and it was found the continuous process 30-fold more productive compared to the batch process. An array of process analytical technology (PAT) tools was used in this work to assess key process parameters that affect the polymorphic outcome and CSD. The desired narrower CSD product was obtained in the OBC compared to that from a batch crystallizer.</p>
<p>The next part of the thesis focused on model-based PI technique for efficient determination of crystallization kinetics of a polymorphic system in CCAC. A novel experimental design was proposed which significantly reduced the number of experiments required to determine crystallization kinetics in a CCAC process. The kinetic parameters were validated, and a validated polymorphic model was used to perform an in-silico design of experiment (DoE) to develop a design space that can be used to identify operating conditions to achieve a desired crystal size and polymorphic form. </p>
<p>The final part of the thesis combines the experimental and model-based approach for designing a continuous CCAC process for ASC in a cascade of Coflore agitated cell reactor (ACR) and three-stage mixed suspension mixed product removal (MSMPR). A combined artificial neural network (ANN) and principal component analysis (PCA) method was used to calibrate an ultraviolet (UV) probe which was used to monitor ASC solute concentration in the cascade process. The crystallization kinetic parameters were estimated in ACR and MSMPR which was used to build a digital model of the cascade process. The digital model was then used to obtain a design space with different temperature profile in the three-stage MSMPR that yielded narrow CSD of ASC form I. Overall, this thesis demonstrates the benefits of applying PI in the CCAC of drug substances using a holistic approach including novel equipment, application of an array of PAT tools, and model-based digital design to achieve desired CQAs of the product.</p>
|
46 |
<b>PROCESS INTENSIFICATION OF INTEGRATED CONTINUOUS CRYSTALLIZATION SYSTEMS WITH RECYCLE</b>Rozhin Rojan Parvaresh (14093547) 23 July 2024 (has links)
<p dir="ltr">The purification of most active pharmaceutical ingredients (APIs) is primarily achieved through crystallization, conducted in batch, semi-batch, or continuous modes. Recently, continuous crystallization has gained interest in the pharmaceutical industry for its potential to reduce manufacturing costs and maintenance. Crystal characteristics such as size, purity, and polymorphism significantly affect downstream processes like filtration and tableting, as well as physicochemical properties like bioavailability, flowability, and compressibility. Developing an optimal operation that meets the critical quality attributes (CQAs) of these crystal properties is essential.</p><p dir="ltr">This dissertation begins by focusing on designing an innovative integrated crystallization system to enhance control over crystalline material properties. The system expands the attainable region of crystal size distribution (CSD) by incorporating multiple Mixed-Suspension Mixed-Product Removal (MSMPR) units and integrating wet milling, classification, and a recycle loop, enhancing robustness and performance. Extensive simulations and experimental data validate the framework, demonstrating significant improvements in efficiency and quality. The framework is further generalized to optimize crystallizer networks for controlling critical quality attributes such as mean size, yield, and CSD by evaluating various network configurations to identify optimal operating parameters.</p><p dir="ltr">The final part of this work concentrates on using the framework to improve continuous production of a commercial API, Atorvastatin calcium (ASC), aiming for higher yield and lower costs. This approach establishes an attainable region to increase crystal sizes and productivity. Due to ASC’s nucleation-dominated nature, the multi-stage system could not grow the crystals sufficiently to bypass granulation, the bottleneck process in ASC manufacturing. Therefore, spherical agglomeration was proposed as an intensification process within an integrated two-stage crystallization spherical agglomeration system to control the size and morphology of ASC crystals and improve downstream processing and tableting. This method proved highly successful, leading to the development of an end-to-end continuous manufacturing process integrating reaction, crystallization, spherical agglomeration, filtration, and drying. This modular system effectively addressed challenges in integrating various unit operations into a coherent continuous process with high production rates.</p>
|
47 |
Caractérisation expérimentale et modélisation de systèmes multiphasiques au cours du procédé de congélation à l’échelle pilote : Application à la fabrication de sorbets dans des échangeurs à surface raclée / Experimental characterization and modelling of multiphase systems during the freezing process at the pilot scale : Application to sorbet manufacturing in scraped surface heat exchangersArellano Salazar, Marcela Patricia 07 December 2012 (has links)
La congélation partielle du mix dans un échangeur de chaleur à surface raclée (ECSR)est l'étape la plus critique dans la fabrication d'un sorbet, car c'est la seule étape où de nouveaux cristaux de glace se forment; par la suite ces cristaux ne font que grossir. L'objectif principal est de produire un grand nombre de cristaux les plus petits possibles afin d'obtenir une texture onctueuse. Pendant le procédé de congélation, le produit est soumis à des interactions couplées d'écoulement du fluide, de transfert de chaleur, de changement de phase et de cisaillement. Ces interactions sont déterminées par les conditions opératoires du procédé de congélation et affectent l'évolution de la distribution de taille des cristaux de glace, ainsi que la texture finale du produit. Ce travail présente la caractérisation expérimentale et la modélisation du procédé de congélation d'un sorbet. La congélation du sorbet à été effectuée dans un ECSR à l'échelle pilote. L'objectif principal de ce travail est l'étude de l'influence des conditions opératoires du procédé de congélation sur les caractéristiques finales du produit: distribution de taille de cristaux de glace, température du produit, fraction volumique de glace et viscosité apparente. Le comportement de l'écoulement du produit dans l'ECSR a été caractérisé par une étude expérimentale et une modélisation de la distribution du temps de séjour (DTS). Une approche de modélisation de la cristallisation de la glace couplant le modèle de DTS avec des équations de transfert de chaleur et de bilan de population des différentes classes de taille de cristaux a été développée. À partir d'une première estimation des paramètres, le modèle de cristallisation prédit de façon satisfaisante les tendances expérimentales et donne un bon aperçu de l'évolution de la distribution de taille des cristaux de glace au cours du procédé de congélation dans l'ECSR. / The partial freezing of the mix inside the scraped surface heat exchanger (SSHE) is the most critical step in sorbet manufacturing, since it is the only stage where new ice crystals are produced; further in the process these ice crystals will only grow. The main objective of the freezing process is to form the smallest possible ice crystals, so as to assure a smooth texture in the final product. During the freezing process the product is subjected to coupled interactions of fluid flow, heat transfer, ice phase change and shear. These interactions are determined by the freezing operating conditions and affect the evolution of the ice crystals size distribution (CSD) and the final texture of the product. This work presents the experimental characterization and the modelling of the initial freezing process of a sorbet. The freezing of sorbet was carried out in a SSHE at the pilot scale. The main objective of this work was the study of the influence of the freezing operating conditions on the final product characteristics: ice CSD, product temperature, ice volume fraction, apparent viscosity. The product flow behaviour in the SSHE was characterized by an experimental and modelling study of the residence time distribution (RTD) of the product. An ice crystallization modelling approach, taking into account the coupling of an empirical RTD model with heat transfer equations and a population balance of the different ice crystal size classes was developed. With a first set of estimated parameters, the ice crystallization model predicts satisfactorily the experimental trends, and made it possible to have an insight on the evolution of ice CSD during the freezing process in the SSHE.
|
48 |
Construction of the attainable region candidates for ball milling operations under downstream size constraintsDlamini, Mlandvo Brian Thembinkosi 09 1900 (has links)
This study investigated the influence of the attainable region technique to ball milling as applied in reactor technology. Flow rate, ball filling, mill speed, ball size and mill density were varied. When each was varied, the rest of the parameters were kept constant in-order to determine the influence of each parameter on the process of milling. Selection function and breakage function parameters were selected for the mill model. These were kept constant for all four circuit configurations: open milling circuit, normal closed circuit, reverse closed circuit, and combined closed circuit. Flow rate was varied from 10 tph to 150 tph. It was observed that in all circuit configurations the optimum results were obtained from 90 tph upwards. When ball filling was varied, the optimum results were obtained between 30 % and 40 % of ball filling. At this range the mill is neither experiencing under-filling nor over-filling. When the mill speed was varied, at 60 – 80 % of critical speed the product specification was achieved and for grinding balls, sizes of between 60 mm and 90 mm yielded the optimum results. Varying the mill density resulted in insignificant changes. From the results, the combined closed circuit produced more of the product specification. / School of Engineering / M. Tech. (Engineering: Chemical)
|
49 |
Development of a four-phase flow simulator to model hybrid gas/chemical EOR processesLotfollahi Sohi, Mohammad 03 September 2015 (has links)
Hybrid gas/chemical Enhanced Oil Recovery (EOR) methods are such novel techniques to increase oil production and oil recovery efficiency. Gas flooding using carbon dioxide, nitrogen, flue gas, and enriched natural gas produce more oil from the reservoirs by channeling gas into previously by-passed areas. Surfactant flooding can recover trapped oil by reducing the interfacial tension between oil and water phases. Hybrid gas/chemical EOR methods benefit from using both chemical and gas flooding. In hybrid gas/chemical EOR processes, surfactant solution is injected with gas during low-tension-gas or foam flooding. Polymer solution can also be injected alternatively with gas to improve the gas volumetric sweep efficiency.
Most fundamentally, wide applications of hybrid gas/chemical processes are limited due to uncertainties in reservoir characterization and heterogeneity, due to the lack of understanding of the process and consequently lack of a predictive reservoir simulator to mechanistically model the process. Without a reliable simulator, built on mechanisms determined in the laboratory, promising field candidates cannot be identified in advance nor can process performance be optimized.
In this research, UTCHEM was modified to model four-phase water, oil, microemulsion, and gas phases to simulate and interpret chemical EOR processes including free and/or solution gas. We coupled the black-oil model for water/oil/gas equilibrium with microemulsion phase behavior model through a new approach. Four-phase fluid properties, relative permeability, and capillary pressure were developed and implemented. The mass conservation equation was solved for total volumetric concentration of each component at standard conditions and pressure equation was derived for both saturated and undersaturated PVT conditions.
To model foam flow in porous media, comprehensive research was performed comparing capabilities and limitations of implicit texture (IT) and population-balance (PB) foam models. Dimensionless foam bubble density was defined in IT models to derive explicitly the foam-coalescence-rate function in these models. Results showed that each of the IT models examined was equivalent to the LE formulation of a population-balance model with a lamella-destruction function that increased abruptly in the vicinity of the limiting capillary pressure, as in current population-balance models. Foam models were incorporated in UTCHEM to model low-tension-gas and foam flow processes in laboratory and field scales.
The modified UTCEM reservoir simulator was used to history match published low-tension-gas and foam coreflood experiments. The simulations were also extended to model and evaluate hybrid gas/chemical EOR methods in field scales. Simulation results indicated a well-designed low-tension-gas flooding has the potential to recover the trapped oil where foam provides mobility control during surfactant and surfactant-alkaline flooding in reservoirs with very low permeability. / text
|
50 |
Entwicklung von CFD-Modellen für Wandsieden und Entwicklung hochauflösender, schneller Röntgentomographie für die Analyse von Zweiphasenströmungen in BrennstabbündelnKrepper, Eckhard, Rzehak, Roland, Barthel, Frank, Franz, Ronald, Hampel, Uwe 16 October 2013 (has links) (PDF)
In einem Verbundprojekt im Rahmen des Programms „Energie 2020+“ gefördert durch das BMBF koordiniert durch das HZDR arbeiteten 4 Universitäten, 2 Forschungszentren und ANSYS zusammen. Der vorliegende Bericht beschreibt die Arbeiten des HZDR, die im Zeitraum September 2009 bis Januar 2013 durchgeführt wurden. Das Vorhaben war auf die Entwicklung und Validierung von CFD-Modellen von unterkühltem Sieden bis zu Filmsieden gerichtet.
Im Bericht werden die entwickelten und verwendeten Modelle dargestellt. Anhand der Nachanalyse von Experimenten wird auf die vorgeschlagene Kalibrierung der Modelle eingegangen. Wichtig ist hierbei eine genauere Beschreibung der Zwischenphasengrenzfläche, die durch Kopplung des Wandsiedemodells mit einem Populationsmodell erreicht werden kann. Anhand der Analyse von Bündelexperimenten konnte gezeigt werden, dass die gemessenen querschnittsgemittelten Messwerte mit einem Satz im Rahmen der Modellunsicherheiten kalibrierter Modellparameter reproduziert werden kann. Für die Berechnung der Verteilungsmuster des Dampfgehaltes im Kanalquerschnitt muss die Modellierung der Turbulenz beachtet werden.
Die experimentellen Arbeiten waren auf die Untersuchung eines Brennelementbündels gerichtet. An einer Versuchsanordnung zu einem Brennelementbündel werden die turbulente einphasige Geschwindigkeit (PIV), der mittlere Gasgehalt (Gamma-Densitometrie) sowie der zeitlich und räumlich aufgelöste Gasgehalt (Hochgeschwindigkeits-Röntgentomographie) gemessen. Letztere Methode wurde in Rossendorf entwickelt.
|
Page generated in 0.1011 seconds