Spelling suggestions: "subject:"more"" "subject:"core""
121 |
Effect of Rock Transverse Isotropy on Stress Distribution and Wellbore FractureLu, Chunyang 16 December 2013 (has links)
Unconventional oil and gas, which is of major interest in petroleum industry, often occur in reservoirs with transversely isotropic rock properties such as shales. Overlooking transverse isotropy may result in deviation in stress distribution around wellbore and inaccurate estimation of fracture initiation pressure which may jeopardize safe drilling and efficient fracturing treatment.
In this work, to help understand the behavior of transversely isotropic reservoirs during drilling and fracturing, the principle of generalized plane-strain finite element formulation of anisotropic poroelastic problems is explained and a finite element model is developed from a plane-strain isotropic poroelastic model. Two numerical examples are simulated and the finite element results are compared with a closed form solution and another FE program. The validity of the developed finite element model is demonstrated. Using the validated finite element model, sensitivity analysis is carried out to evaluate the effects of transverse isotropy ratios, well azimuth, and rock bedding dip on pore pressure and stress distribution around a horizontal well.
The results show that their effect cannot be neglected. The short term pore pressure distribution is sensitive to Young’ modulus ratio, while the long term pore pressure distribution is only sensitive to permeability ratio. The total stress distribution generally is not sensitive to transverse isotropy ratios. The effective stress and fracture initiation are very sensitive to Young’ modulus ratio. As the well rotates from minimum horizontal in-situ stress to maximum horizontal in-situ stress, the pore pressure and stress distributions tend to be more unevenly distributed around the wellbore, making the wellbore easier to fracture. The pore pressure and stress distributions tend to "rotate" in correspondence with the rock bedding plane. The fracture initiation potential and position will alter when rock bedding orientation varies.
|
122 |
Experimental investigation of pore scale velocity within micro porous mediaSen, Debjyoti Unknown Date
No description available.
|
123 |
The Evolution of Deep-Water Salt-Tectonic Structures, Numerical Modeling Studies applied to the Northwestern Gulf of MexicoGradmann, Sofie 11 September 2012 (has links)
Salt tectonics is a key player in the evolution of many worldwide sedimentary basins on rifted continental margins. For more than a century, the evolving structures have been studied; but focus remained primarily on the onshore and shallow-water regions. The evolution of the poorly studied deep-water salt-tectonic structures is the focus of this thesis. Investigations are performed using 2D numerical models that comprise a viscous salt layer overlain by a frictional-plastic passive margin sedimentary sequence from shelf to deep water.
This thesis addresses multiple salt-tectonic processes (gravity spreading, evolution of fold belts and salt canopies, diapirism) in a general context but with special focus on the structural evolution of the northwestern Gulf of Mexico (GoM). Here, multiple phases of gravity-spreading induced salt mobilization and thin-skinned deformation occurred throughout the Cenozoic. During the latest, late Oligocene-Miocene phase, the Perdido Fold Belt (PFB) formed from a 4.5km thick pre-kinematic section as a prominent salt-cored deep-water structure above the pinch-out of the autochthonous salt. It is here demonstrated with analytical as well as numerical calculations that the folding of the PFB can have formed by gravity spreading alone without basement tectonics. A requirement for this deformation is very high pore-fluid pressure in the sediments, which effectively reduces the sediments' mechanical strength. These values are refined using numerical models that couple compaction-induced fluid pressure to mechanical deformation. It is shown that very high fluid pressure is only necessary at the landward base of the deforming system; fluid pressure in other regions may remain moderate. This study shows, for the first time, the regional and dynamic evolution of pore-fluid pressure in a continental margin sedimentary system above salt. Additionally, the contribution of `lateral compaction' during fold-belt evolution is addressed.
Landward of the PFB, a large-scale canopy developed during the Eocene. Its evolution is studied by investigating three different concepts of canopy evolution that have been proposed in the scientific literature. A canopy evolving via the mechanism of squeezed diapirs is most similar to the Eocene canopy of the northwestern GoM. A canopy evolving via the mechanism of breached anticlines is similar to that observed above the landward end of the PFB. Dynamic diapir growth is addressed in a neutral stress regime under uneven sedimentation employing a new mechanism of diapir initiation and evolution.
|
124 |
Thermal pressurization of pore fluids and implications for fault frictionVredevoogd, Michael Alan, January 2009 (has links)
Thesis (Ph. D.)--University of California, Riverside, 2009. / Includes abstract. Includes bibliographical references. Issued in print and online. Available via ProQuest Digital Dissertations.
|
125 |
Untersuchungen zur simultanen Aminierung und Porenöffnung von Polyetherimid-MembranenSantoso, Filiana. Unknown Date (has links) (PDF)
Techn. Universiẗat, Diss., 2004--Berlin.
|
126 |
Pore space structure effects on flow in porous mediaBaychev, Todor January 2018 (has links)
Fluid flow in porous media is important for a number of fields including nuclear waste disposal, oil and gas, fuel cells, water treatment and civil engineering. The aim of this work is to improve the current understanding of how the pore space governs the fluid flow in porous media in the context of nuclear waste disposal. The effects of biofilm formation on flow are also investigated. The thesis begins with a review of the current porous media characterisation techniques and the means for converting the pore space into pore network models and their existing applications. Further, I review the current understanding of biofilm lifecycle in the context of porous media and its interactions with fluid flow. The model porous media used in this project is Hollington sandstone. The pore space of the material is characterised by X-ray CT and the equivalent pore networks from two popular pore network extraction algorithms are compared comprehensively. The results indicate that different pore network extraction algorithms could interpret the same pore space rather differently. Despite these differences, the single-phase flow properties of the extracted networks are in good agreement with the estimates from a direct approach. However, it is recommended that any flow or transport study using pore network modelling should entail a sensitivity study aiming to determine if the model results are extraction method specific. Following these results, a pore merging algorithm is introduced aimed to improve the over segmentation of long throats and hence improve the quality of the extracted statistics. The improved model is used to study quantitatively the pore space evolution of shale rock during pyrolysis. Next, the extracted statistics from one of the algorithms is used to explore the potential of regular pore network models for up-scaling the flow properties of porous materials. Analysis showed that the anisotropic flow properties observed in the irregular models are due to the different number of red (critical) features present along the flow direction. This observation is used to construct large regular models that can mimic that behaviour and to discuss the potential of estimating the flow properties of porous media based on their isotropic and anisotropic properties. Finally, a long-term flow-through column experiment is conducted aiming to understand the effects of bacterial colonisation on flow in Hollington sandstone. The results show that such systems are quite complex and are susceptible to perturbations. The flow properties of the sandstone were reduced significantly during the course of the experiment. The possible mechanisms responsible for the observed reductions in permeability are discussed and the need for developing new imaging techniques that can allow examining biofilm development in-situ is underlined as necessary for drawing more definitive conclusions.
|
127 |
EFFECTS OF ADDITION OF LARGE PERCENTAGES OF FLY ASH ON LIQUEFACTION BEHAVIOR OF SAND.Regmi, Gaurav 01 August 2014 (has links)
The liquefaction resistance of a saturated medium sand with varying amount of non-plastic type F fly ash was evaluated by conducting cyclic triaxial tests. The test results were used to evaluate the effect of addition of various percentages of fly ash on the liquefaction resistance of Ottawa sand. The effect of cyclic shear stress and confining pressure on liquefaction resistance of the sand-fly ash mixtures was the main scope of this research. In addition, the Young's Modulus and Damping Ratio for sand-fly ash mixtures were also determined. A comprehensive experimental program was conducted in which 50 stress controlled cyclic triaxial tests were performed on a clean sand, sand containing 25%, 30%, 50% and 70% fly ash at a constant relative density of 50%. The results show that sand containing 25% fly ash has the highest liquefaction resistance under cyclic loading in comparison to clean sand and sand containing 30%, 50% and 70% fly ash. The cyclic resistance goes on decreasing as the fly ash content further increases. The test result also shows that the liquefaction resistance of the clean sand and sand containing 70% fly ii ash is almost same. The test results were also examined in terms of the conceptual framework of Thevanayagam (2000). The effects on liquefaction resistance were also measured in terms of pore water pressure generation and deformation of the sample. As the confining pressure increases, shear stress required to cause initial liquefaction of the sample also increases. Modulus of Elasticity was seen to increase with increase in confining pressure and decrease with increase in axial strain for all cases of sand-fly ash mixtures used in these tests. The damping ratio of the sample increases with the increase in axial strain upto about 1% and then it either decreases or remains constant thereafter. There was no clear correlation of damping ratio with confining pressure.
|
128 |
Modeling the Effects of Three-Dimensional Pore Geometry on Gas Hydrate Phase StabilityIrizarry, Julia 18 August 2015 (has links)
Porous media affect hydrate stability by forcing hydrate-liquid interfaces to form high curvature geometries and by forcing the molecules of the hydrate, liquid, and sedimentary particles that compose the medium to interact where they are in close proximity. To evaluate these effects we first create synthetic spherical packings to approximate pore space geometry. We use the synthetic pore space to calculate the perturbation to the chemical potential caused by the geometrical constraints. Our model predictions agree with published data for ice-water and water-vapor systems. When particles are well-approximated as spheres, our model fits the data with R-squared values that range between about 80% to over 99%. However, our model needs to be improved for porous media that contain a significant fraction of non-equant particles such as clay. Lastly, we demonstrate how our model can be used in predictions for the evolution of hydrate saturation.
This thesis includes unpublished co-authored material.
|
129 |
Změny koncentrací fosforu a železa v pórové vodě sedimentu měřené pomocí gelových minipeeperů / Changes of phosphorus and iron concentrations in pore water vertical profiles of hypertrophic reservoir measured by gel minipeepers.PECHÁČKOVÁ, Petra January 2008 (has links)
Sediment cores obtained during the year 2006 (April, June, September), originated from inflow and dam sites in hypertrophic reservoir were incubated and analyzed in the laboratory under in situ conditions. The aim of this study was to find out the release rates of phosphorus and iron and to define the changes in the concentrations of dissolved compounds in pore water in the first 6 cm in the sediment. Gel minipeepers were used to measure the vertical profiles of dissolved analyts in pore water. This method was found suitable for investigation of P, Fe and basic ions concentrations. Differences between inflow and dam site were found
|
130 |
Determinação de volume de poro de silicas para CLAE utilizando espectroscopia no infravermelho proximo / Determination of pore volume of silicas for HPLC employing near infrared spectroscopyPanontin, Flavia 16 April 2007 (has links)
Orientador: Ivo Milton Raimundo Junior / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Quimica / Made available in DSpace on 2018-08-09T15:37:40Z (GMT). No. of bitstreams: 1
Panontin_Flavia_M.pdf: 2358588 bytes, checksum: 5556de1b55db28438143379cca4b4281 (MD5)
Previous issue date: 2007 / Resumo: Um método para a determinação do volume de poros de sílicas, utilizadas como suportes de fases estacionárias para CLAE (Cromatografia Líquida de Alta Eficiência), foi desenvolvido utilizando a espectroscopia na região do infravermelho próximo (NIR). Foram preparadas amostras pela adição de sílica em soluções de diferentes concentrações de compostos de recobrimento, como polímeros, hidrocarbonetos lineares e ramificados, nujol, glicerol, entre outros, em meio de diclorometano ou metanol. Foram registrados espectros de reflectância difusa na região de 1100 a 2300 nm. Os espectros obtidos foram submetidos à primeira derivada e as intensidades em 1688 nm (primeiro sobretom de ligações C-H) foram empregadas para a construção de uma curva em função da carga inicial (massa recobrimento/massa total) da amostra. Foram obtidos dois ramos lineares, o primeiro (praticamente paralelo à abscissa) indica que a imobilização do reagente no interior dos poros da sílica, e o segundo mostra um aumento crescente dos valores de primeira derivada, indicando o recobrimento de sua superfície externa. A intersecção destas duas retas fornece o valor de carga equivalente ao total preenchimento dos poros. Os resultados obtidos de volume de poro são concordantes com os valores fornecidos pelo método padrão (BJH), apresentando desvios padrão menores que 10%. O método proposto apresenta boa reprodutibilidade, com desvios menores que 1,0%, sendo rápido, simples e não destrutivo o que mostra uma grande vantagem frente ao método BJH, que faz uso de equipamentos caros e procedimentos lentos / Abstract: A method for the determination of pore volume of silicas, used as stationary phases for HPLC (High Performance Liquid Chromatography) was developed using near infrared spectroscopy (NIR). Samples were prepared by the addition of silica in covering compounds solutions of different concentrations, as linear and ramified polymers, hydrocarbons, nujol, glycerol, and among others, using dichloromethane or methanol as solvents. Diffuse reflectance spectra were registered in the 1100 to 2300 nm region. Spectra were submitted to a first derivative pre-treatment and the intensities at 1688 nm (first overtone of C-H bonds) were used for the construction of a curve as a function of the initial load (covering/total mass) of the sample. Two linear branches were obtained; the first one (practically parallel to the abscissa) indicates the immobilization of the reagent in the interior silica pores, and the second one shows increasing values of first derivative, indicating the covering of its external surface. The intersession of these two straight lines supplies the load value that is equivalent to the total fulfilling of the pores. The results obtained for of pore volume are in agreement with those supplied by the standard method (BJH), presenting deviation lower than 10 %. The proposed method presents good reproducibility with standard deviation lower than 1.0 %, being fast, simple and no destructive technique, that is a great advantage over the BJH method, which uses expensive equipment and slow procedures / Mestrado / Quimica Analitica / Mestre em Química
|
Page generated in 0.0518 seconds