• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 408
  • 215
  • 114
  • 17
  • 13
  • 10
  • 9
  • 7
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 1022
  • 1022
  • 308
  • 293
  • 230
  • 229
  • 223
  • 181
  • 166
  • 136
  • 119
  • 112
  • 112
  • 105
  • 105
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
331

Modelling Wind Power for Grid Integration Studies

Olauson, Jon January 2016 (has links)
When wind power and other intermittent renewable energy (IRE) sources begin to supply a significant part of the load, concerns are often raised about the inherent intermittency and unpredictability of these sources. In order to study the impact from higher IRE penetration levels on the power system, integration studies are regularly performed. The model package presented and evaluated in Papers I–IV provides a comprehensive methodology for simulating realistic time series of wind generation and forecasts for such studies. The most important conclusion from these papers is that models based on coarse meteorological datasets give very accurate results, especially in combination with statistical post-processing. Advantages with our approach include a physical coupling to the weather and wind farm characteristics, over 30 year long, 5-minute resolution time series, freely and globally available input data and computational times in the order of minutes. In this thesis, I make the argument that our approach is generally preferable to using purely statistical models or linear scaling of historical measurements. In the variability studies in Papers V–VII, several IRE sources were considered. An important conclusion is that these sources and the load have very different variability characteristics in different frequency bands. Depending on the magnitudes and correlations of these fluctuation, different time scales will become more or less challenging to balance. With a suitable mix of renewables, there will be little or no increase in the needs for balancing on the seasonal and diurnal timescales, even for a fully renewable Nordic power system. Fluctuations with periods between a few days and a few months are dominant for wind power and net load fluctuations of this type will increase strongly for high penetrations of IRE, no matter how the sources are combined. According to our studies, higher capacity factors, more offshore wind power and overproduction/curtailment would be beneficial for the power system.
332

Use of Thyristor Controlled Series Capacitors (TCSCs) to enhance power system transient stability and their possible application on the South African Grid

Gumunyu, Tonderayi January 2015 (has links)
This research report is submitted as a partial fulfilment of the requirements for a Master of Science degree in Electrical Engineering (Power). / Thyristor Controlled Series Capacitors (TCSCs) are FACTS devices which incorporate power-electronic-based and other static controllers to enhance controllability and increase power transfer capability. This research investigated the possibility of applying TCSCs on the South African transmission network, in particular application on long transmission lines connecting bulk thermal generators in the northern part of South Africa to load centres located hundreds of kilometres elsewhere in the country. The investigation, conducted using PSS/E (a power system analysis software) demonstrated that application of TCSCs on this part of South African transmission network results in improved transient stability margins. The resulting improvement in transient stability is comparable to other transient stability enhancement options like addition of transmission lines, thus the use of TCSCs can be considered as an alternative. Further studies would be vital to understand the interaction between Power System Stabilizers (PSSs) and TCSCs in order to ensure proper tuning and interaction amongst the devices. / MT2017
333

Algoritmo baseado na equação diferencial para proteção rápida de linhas de transmissão / An algorithm based on the differential equation for fast protection of transmission lines

Macêdo, Renata Araripe de 24 November 2000 (has links)
Este trabalho apresenta o desenvolvimento de um algoritmo baseado na modelagem do sistema de transmissão por meio de equações diferenciais, formuladas através dos parâmetros resistência e indutância da linha de transmissão a ser protegida. Nesta abordagem não é necessário que a entrada do algoritmo seja puramente senoidal, admitindo-se a presença de harmônicos e componentes CC presentes na falta como parte da solução do problema. Utilizou-se o software ATP para a modelagem do sistema elétrico estudado e a obtenção do conjunto de dados para análise e testes, permitindo-se a representação detalhada da linha de transmissão por meio das características dos condutores e suas respectivas disposições geométricas nas torres de transmissão, além da modelagem das diversas manobras e defeitos que os afetam, buscando-se uma aproximação com uma situação real. Com relação ao uso direto das equações diferenciais para a tarefa de proteção das linhas, constatou-se que sua aplicação não produz uma estimativa aceitável para ser usada em relés digitais por possuírem convergência em tempos normalmente superiores a dois ciclos. Assim, foi feita uma filtragem das respostas do algoritmo, proporcionando-se um diagnóstico mais rápido das estimativas. Para isso foi usado um filtro de mediana de 5ª ordem para o cálculo da localização da falta. Para todos os tipos de falta testados, a estimativa da localização da falta com o uso do referido filtro mostrou-se altamente satisfatória para a finalidade de proteção, convergindo em menos de um ciclo e meio de pós-falta, após a filtragem das estimativas, imprimindo maior velocidade de resposta para os relés digitais. / The present work shows the development of an algorithm based on the modeling of the transmission system utilizing differential equations. The differential equation for the line is solved having its resistance and inductance as parameters. In this approach there is no need for the algorithm inputs to be pure sinusoidal, allowing the presence of harmonic and DC components in the line as a part of the solution to the problem. The software ATP was utilized for the modeling of the electric system under study as well as data collection for analysis and tests. This representation allowed a detailed representation of the transmission line through the characteristics of the conductors and its geometrical disposition in the transmission towers, as well as the simulation of faults that usually affect the electric system, reproducing a realistic situation. The direct use of differential equations do not give an acceptable estimation as far as digital relays are concerned because they have convergence times over two cycles. In this sense, a 5th order median filter was utilized, providing faster diagnosis for the fault location estimation. The estimation of the fault location has proved to be a coherent criteria for the algorithm. For the fault types tested, the estimation for the fault location utilizing line parameters has shown itself highly satisfactory for protection purposes. This work has shown that the algorithm oulputs converge in less than 1 and a half cycles afler the fault occurrence, presenting a much faster response for digital relays.
334

Sistema para localização de faltas em linhas de transmissão com subestações conectadas em derivação. / Fault location system for multi-terminal transmission lines.

Manassero Junior, Giovanni 17 October 2006 (has links)
Este trabalho tem por objetivo apresentar o desenvolvimento e a implementacao em uma rotina computacional, de algoritmos para a localizacao de faltas em linhas de transmissao com subestacoes conectadas em derivacao. Os algoritmos propostos neste trabalho integram uma metodologia para localizacao de faltas, que e capaz de identificar corretamente o ponto de ocorrencia do defeito utilizando as componentes de fase dos fasores de tensoes e correntes, calculadas atraves dos registros desses sinais, efetuados por oscilografos digitais e/ou reles de protecao instalados nos terminais da linha de transmissao. Alem disso, a metodologia para localizacao de faltas tem acesso aos parametros eletricos da linha e informacoes sobre o tipo de ligacao e o carregamento dos transformadores conectados aos terminais das derivacoes. Este trabalho apresenta tambem o desenvolvimento dos modelos para os elementos do sistema de transmissao, em componentes de fase. Estes modelos sao utilizados pelos algoritmos que integram a metodologia para localizacao de faltas. / This research presents the development and implementation in a computational routine, of algorithms for fault location in multi-terminal transmission lines. The algorithms proposed in this work are part of a fault location methodology, which is capable of correctly identifying the fault point based on voltage and current phase components. The voltage and current phasors are calculated using measurements of voltage and current signals from intelligent electronic devices, located on the transmission line terminals. The algorithms have access to the electrical parameters of the transmission lines and to information about the transformers loading and their connection type. This work also presents the development of phase component models for the transmission system elements used by the fault location algorithms, that are part of the fault location methodology.
335

Phase co-ordinate bond graph analysis of multiport energy Systems

Salleh, M. Ridzuan January 1974 (has links)
The analysis of unbalanced power system problems using the method of phase co-ordinates by which the phase quantities are preserved has obvious practical advantages over the transformation methods requiring the phase quantities to be substituted by, for example, symmetrical component and d-q quantities. Since the physical identity of the system is maintained in the phase frame of reference, the matematical models of the system can be subjected to actual operating constraints enabling a unified approach to be adopted in the study of both symmetrical and unsymmetrical conditions. In this thesis the bond graph techniques are used to model power system components in terms of their phase co-ordinates. The bond graph structure, which is based on energy continuity and power balance, classifies system and sub-systems, with respect to the number of energy ports through which energy or power is exchanged with the environment as well as in terms of the particular internal energy transformations involved. The use of bond graphs for the analysis of non-linear electromagnetic systems has resulted in the evolution of a uniform diagramatic structure which, represents in a single diagram the basic field properties such as the magneto-motive force and the flux linkages together with the conjugate circuit power variables, voltage and current. As an extension of this ideal the general n-port electromagnetic and electrostatic field systems are derived in bond graph notations. A very desirable feature of this method of presentation is that there exists a one-to-one-correspondence between the bond graph and a computation structure which may be used for the purpose of simulation by either analogue or digital computers. The general n-port electromagnetic and electrostatic field systems form the basis for the effective modelling of power system components such as rotating machines, transformers and transmission lines. In the investigations of earth faults, these models are simplified in accordance with the need of the particular study but are sufficiently accurate representations to allow predictions on the overall system behaviours. The bond graph approach is ideally suited to expedite the modelling of dynamic interacting energy systems and when used in conjunction with the computation structure can provide the simulation technique required to model accurately the non-linear behaviours of multiport electromechanical energy converters. The effects of magnetic saturation in synchronous generators are presented in detail.
336

An efficient algorithm using Householder's formulas for the solution of faulted power systems

Altamirano Chavez, Armando January 2010 (has links)
Digitized by Kansas Correctional Industries / Department: Electrical Engineering.
337

Selective modal analysis with applications to electric power systems

Pérez Arriaga, José Ignacio January 1981 (has links)
Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1981. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING. / Bibliography: leaves 400-410. / by Jose Ignacio Perez Arriaga. / Ph.D.
338

Analysis of dynamic thermal rating system of transmission lines

Teh, Jiashen January 2016 (has links)
There is a general consensus worldwide for a need to increase the capacities of transmission lines by not physically altering the transmission structures. Amidst this challenge, dynamic thermal rating (DTR) system appears as an appropriate option. Besides that, many countries have also pledged to integrate wind energy sources into their power networks. Taking these as motivations, the purpose of this thesis is to carry out the reliability analysis of DTR system for transmission lines. The two main standards - IEEE 738 and CIGRE, use for calculating the line rating of overhead lines has been analysed and compared. It was demonstrated that the two standards yield insignificant differences in their calculated line ratings. A new methodology that can systematically assess the reliability and risk of any DTR system designs was proposed in this thesis. In the reliability assessment part, methods such as the event tree analysis (ETA), risk reduction worth (RRW) and wide range method (WRM) were used. The risks of DTR systems were evaluated by implementing them in the IEEE 24-bus reliability test network (RTN). The network's loss of load and the percentages of the conductor loss of tensile strength constitute the risks of DTR systems. In the risk assessment part, a multiple-linear regression (MLR) model was proposed to estimate missing weather values during the failure of DTR sensors. Results in this thesis show that the MLR model is accurate and has only estimation error of less than 6%. It avoids overestimating the risk of DTR systems. An optimum DTR system design was also selected. The strategic placement of DTR sensors along a transmission line is an important reliability issue too. Hence, a new DTR sensor placement algorithm that considers the effects of DTR system ratings on the amount of line sagging, conductor annealing and the correlation between DTR system ratings and actual line ratings was proposed. Results in this thesis show that the newly proposed algorithm outperforms the currently published algorithm in terms of causing no spans to sag beyond their ground clearance limits and all spans experience lesser annealing effects. The 2-dimensional movement of line spans in their longitude and latitude directions, which the currently published algorithm also lacks, are considered in the proposed algorithm. This thesis also investigates the reliability behaviours of a power network that has DTR systems and wind farms. The proposed methodology for achieving that considers the reliability of transmission lines, DTR systems, conventional generators and wind turbines. The chronological behaviour of DTR ratings and wind farm power outputs was modelled using the auto-regressive and moving-average (ARMA) model. The correlations between the ARMA models were also considered. Results in this thesis show that by considering the correlation effects, the network's reliability indices are not over and under estimated. A new reliability index for describing the amount of wind power integration named as Expected Wind Power Delivered (EWPD) was proposed as well.
339

A super-capacitor based energy storage for quick variation in stand-alone PV systems

Sehil, Khaled January 2018 (has links)
Photovoltaic (PV) system is one of the most prominent energy sources, producing electricity directly from sunlight. In additionally, it is easy to install and is supported financially by many governments as part of their strategy to reduce CO2 gas emissions, and to achieve their agreed set of reduction targets by 2020. In the meantime, researchers have been working on the PV system to make it more efficient, easy to maintain, reliable to use and cost effective. In the stand-alone PV system, a battery is required. This is due to the fluctuating nature of the output energy delivered by the PV arrays owing to the weather conditions and the unpredictable behaviour of uses with regard to the consumption of energy. During the hours of sunshine, the PV system is directly feeding the load and any surplus electrical energy is stored in the battery at a constant current. During the night, or during a period of low solar irradiation, the energy is supplied to the load from the battery. However, the stand-alone PV system is designed to provide an acceptable balance between reliability and cost, which is a major challenge to the designer owing to the approaches used to size the PV arrays and the battery bank. As a result, the unpredictable, quick daily changes on the PV output is not dependable. Moreover, battery performance, length of life and energy efficiency depends on the rate at which it is discharged. Therefore, it is essential to use other methods to deal with any quick variation in energy. In this thesis, a super capacitor is used to solve this problem, as it can deal with the fast-changing weather, or a rapid variation in the energy requirements of the customer. A critical evaluation with in-depth analysis of the placement and the implementation for the super-capacitor in the PV standalone system has been carried out. The results show, super-capacitor capacitance and the converter efficiency affect the delivered load energy. However, the bi-directional topology performs better than uni-directional under the same conditions. Finally, a further improvement of the system at component level, has been developed through an energy recovery snubber for the switching transition and achieved a recovery of energy for the resistive load, 94.44% for the turn on transition and 92.86% for the turn off transition. Moreover, for the inductive load, 78.33% and 97.33% of energy has been recovered for the turn on and for the turn off transition respectively.
340

Análise da proteção de sistemas de energia elétrica utilizando técnicas modernas de otimização heurística / Analysis of the power system protection using modern heuristic optimization techniques

Wellington Maycon Santos Bernardes 18 May 2018 (has links)
O estudo da proteção em sistemas elétricos de potência representa um tópico de grande relevância proporcionando continuidade do serviço e segurança da operação. Hoje, a coordenação de relés direcionais de sobrecorrente (RDSs) é realizada usando formulações matemáticas que basicamente levam em consideração o tempo de operação dos dispositivos e o atendimento ao intervalo de tempo de coordenação (ITC). Nesta tese tem sido realizada a coordenação e seletividade entre RDSs considerando a otimização simultânea das unidades temporizada e instantânea de fase e neutro, contingências em circuitos mutuamente acoplados e ajuste automático das curvas. Algumas questões como os critérios de curtos-circuitos e tratamento topológico para circuitos interligados são também discutidas. Inicialmente, os estudos foram tratados como Otimização Monobjetivo (soma ponderada) minimizando a soma do tempo dos relés primários quando aplicado um curto-circuito do tipo close-in, na barra remota e a soma dos ajustes da unidade de sobrecorrente instantânea. Em sequência duas abordagens envolvendo um aspecto multiobjetivo são propostas. A primeira minimiza o tempo de operação de todos dispositivos de proteção, enquanto maximiza um índice de coordenação, ocasionando então em ITC variável. Já a segunda, além de minimizar o tempo de operação, o número de ajustes permitidos a serem alterados é limitado pelo operador, se a coordenação de todos elementos envolvidos for inviável. Os ajustes dos RDSs são obtidos por meio de algoritmos meta-heurísticos (derivados do Particle Swarm Optimization e Non-dominated Sorting Genetic Algorithm-II. Os métodos modernos ou inteligentes, concebidos a partir de conceitos de inteligência artificial, têm evoluído rapidamente e permitem a obtenção de excelentes soluções com a confiabilidade adequada para aplicações em engenharia. A eficácia e robustez do método são realizadas em um sistema de transmissão pertencente à área de uma concessionária brasileira. Por fim, os resultados foram bem satisfatórios visto que o emprego da unidade instantânea e múltiplas curvas diminuiu substancialmente a soma de tempo de atuação dos dispositivos de proteção, contribuindo para minimizar o trabalho empregado pelo engenheiro de proteção com segurança e rica informação técnica. Ademais, as estratégias multiobjetivos auxiliam o operador na tomada de decisão uma vez que cada solução encontrada atende específicas restrições oriundas do equipamentos empregados ou estados contingenciais da rede. / The study of power system protection represents a highly relevant topic providing continuity of service and safety of operation. Today, the coordination of directional overcurrent relays (DORs) is performed using mathematical formulations that basically take into account the operation time of the devices and the coordination time interval (CTI). In this thesis, coordination and selectivity between DORs have been performed considering the simultaneous optimization of the instantaneous and time overcurrent unit (both phase and ground), contingencies in coupled mutually circuits and automatic determination of the curves. Some issues are also discussed such as criteria for short-circuit calculation and topological treatment for interconnected circuits. Initially, the studies were considered as being a case of Monobjective Optimization (weighted sum) by minimizing the sum of operation time of primary relays when occur close-in and line-end faults and also the sum of the instantaneous overcurrent unit. In sequence are proposed two approaches involving multiobjective aspect. The first minimizes the operating time of all protection devices, while maximizing a coordination index (here, CTI is non-fixed). The second, besides minimizing the operating time, the number of settings allowed to alter is limited by operator, if the coordination of all elements involved is not possible in practice. The settings of DORs have been found by using meta-heuristic algorithms (derived from Particle Swarm Optimization and Non-dominated Sorting Genetic Algorithm-II). Modern or intelligent methods, conceived from artificial intelligence, have evolved rapidly and obtained excellent solutions with the acceptable reliability for engineering applications. The test has been carried out on a transmission network from a Brazilian utility. Finally, the results were well satisfactory because using the instantaneous unit and multiple curves substantially reduced the sum of operating time of the protective devices, contributing to decrease workload of protection engineers with safety and rich technical information. In addition, the multiobjective strategies help the operator in the decision making since each solution satisfies specific constraints coming from used equipment or contingency states of the existing network.

Page generated in 0.0668 seconds