Spelling suggestions: "subject:"power converters"" "subject:"power konverters""
1 |
A theoretical and experimental study of slender oscilating water columnsDooley, Thomas January 1995 (has links)
No description available.
|
2 |
A new winding configuration for the doubly salient 8/6 switched reluctance machineAshour, Hamdy Ahmed January 1999 (has links)
No description available.
|
3 |
Back-to-back converters for variable speed motor drive applicationsWheeler, Jeremy Nicholas January 1995 (has links)
No description available.
|
4 |
Space Vector Modulation of Multi-level and Multi-module Converters for High Power ApplicationsSaeedifard, Maryam 26 February 2009 (has links)
This thesis presents and investigates Space Vector Modulation (SVM) switching strategies for (i) a multi-level Diode-Clamped Converter (DCC) and (ii) a multi-module Voltage-Sourced Converter (VSC) system in which each module is a conventional two-level VSC. Although the SVM strategies are general and applicable for n-level DCC and n-module VSC systems, this text only concentrates on five-level DCC and four-module VSC systems.
For a five-level DCC, a computationally efficient SVM algorithm is proposed. The algorithm, that is based on a classifier Neural Network (NN), reduces the computational time for the SVM realization. Therefore, adequate saving of processor execution time, in each sampling period of SVM, is provided to carry out other functions, e.g. the calculations required for DC-capacitor voltage balancing task. The thesis also proposes a DC-capacitor voltage
balancing strategy to counteract the voltage drift phenomenon of (i) a passive-front-end five-level DCC, and (ii) a back-to-back
connected five-level DCC system. The proposed balancing strategy, that is based on augmenting the proposed SVM algorithm, takes advantage of the redundant switching states to minimize a quadratic cost function associated with voltage deviations of the
DC-capacitors. The salient features of the proposed balancing strategy are (i) online calculation of SVM to select the best
switching states, (ii) minimization of switching frequency, (iii) minimization of the THD content of the AC-side voltage, and (iv) no requirement for additional power circuitry.
For a four-module VSC system a sequential sampling SVM strategy is proposed. The proposed strategy (i) provides harmonic cancellation/minimization at the net AC-side voltage of the multi-module VSC system, and (ii) offers a low switching frequency
for each VSC module.
Technical feasibility of the proposed SVM strategies for a five-level DCC and a four-module VSC system, as a STATCOM and a
back-to-back HVDC system, are investigated and presented. The studies are conducted in the time-domain, in the PSCAD/EMTDC
software environment.
|
5 |
Space Vector Modulation of Multi-level and Multi-module Converters for High Power ApplicationsSaeedifard, Maryam 26 February 2009 (has links)
This thesis presents and investigates Space Vector Modulation (SVM) switching strategies for (i) a multi-level Diode-Clamped Converter (DCC) and (ii) a multi-module Voltage-Sourced Converter (VSC) system in which each module is a conventional two-level VSC. Although the SVM strategies are general and applicable for n-level DCC and n-module VSC systems, this text only concentrates on five-level DCC and four-module VSC systems.
For a five-level DCC, a computationally efficient SVM algorithm is proposed. The algorithm, that is based on a classifier Neural Network (NN), reduces the computational time for the SVM realization. Therefore, adequate saving of processor execution time, in each sampling period of SVM, is provided to carry out other functions, e.g. the calculations required for DC-capacitor voltage balancing task. The thesis also proposes a DC-capacitor voltage
balancing strategy to counteract the voltage drift phenomenon of (i) a passive-front-end five-level DCC, and (ii) a back-to-back
connected five-level DCC system. The proposed balancing strategy, that is based on augmenting the proposed SVM algorithm, takes advantage of the redundant switching states to minimize a quadratic cost function associated with voltage deviations of the
DC-capacitors. The salient features of the proposed balancing strategy are (i) online calculation of SVM to select the best
switching states, (ii) minimization of switching frequency, (iii) minimization of the THD content of the AC-side voltage, and (iv) no requirement for additional power circuitry.
For a four-module VSC system a sequential sampling SVM strategy is proposed. The proposed strategy (i) provides harmonic cancellation/minimization at the net AC-side voltage of the multi-module VSC system, and (ii) offers a low switching frequency
for each VSC module.
Technical feasibility of the proposed SVM strategies for a five-level DCC and a four-module VSC system, as a STATCOM and a
back-to-back HVDC system, are investigated and presented. The studies are conducted in the time-domain, in the PSCAD/EMTDC
software environment.
|
6 |
Microcontroller-based current-mode control for power convertersHe, Dake, January 2005 (has links) (PDF)
Thesis (Ph.D.)--Auburn University, 2005. / Abstract. Vita. Includes bibliographic references (ℓ. 164-173)
|
7 |
Modulation of Modular Multilevel Converters for HVDC TransmissionHassanpoor, Arman January 2016 (has links)
The outstanding features of modular multilevel converters (MMC) have recently gained much attention in the high-voltage direct-current (HVDC) transmission field. Power quality, converter cost and system performance are three crucial aspects of HVDC MMCs which are directly linked to the converter modulation and switching schemes. High power quality and performance require high switching frequency and large cell capacitor whereas low switching frequency and small cell capacitor are needed to reduce the converter cost. The main objective of this thesis is to propose a practical switching method for HVDC MMCs which balances the aforementioned contradictory requirements. A mathematical analysis of the converter switching pattern, against the power quality and converter cost, has been conducted to formulate an optimization problem for MMCs. Different objective functions are studied for the formulated optimization problem such as converter loss minimization, voltage imbalance minimization and computational burden minimization. This thesis proposes three methods to address different objective functions. Ultimately, a real-time simulator has been built to practically verify and investigate the performance of the proposed methods in a realistic point-to-point HVDC link. The most significant outcome of this thesis is the tolerance band-based switching scheme which offers a direct control of the cell capacitor voltage, low power losses, and robust dynamic performance. As a result, the converter switching frequency can reach frequencies as low as 70 Hz (with the proposed cell tolerance band (CTB) method). A modified optimized CTB method is proposed to minimize the converter switching losses and it could reduce the converter switching losses by 60% in comparison to the conventional phase shifted carrier modulation method. It is concluded intelligent utilization of sorting algorithm can enable efficient HVDC station operation by reducing the converter cost. / <p>QC 20160916</p>
|
8 |
Active power control response from large offshore wind farmsBanham-Hall, Dominic January 2012 (has links)
The GB power system will see huge growth in transmission connected wind farms over the next decade, driven by European clean energy targets. The majority of the UK’s wind development is likely to be offshore and many of these wind farms will be interfaced to the grid through power converters. This will lead to a loss of intrinsic inertia and an increasing challenge for the system operator to keep grid frequency stable. Given this challenge, there is increasing interest in understanding the capabilities of converter control systems to provide a synthesised response to grid transients. It is interesting to consider whether this response should be demanded of wind turbines, with a consequential reduction in their output, or if advanced energy storage can provide a viable solution. In order to investigate how large offshore wind farms could contribute to securing the power system, wind turbine and wind farm models have been developed. These have been used to design a patented method of protecting permanent magnet generator’s converters under grid faults. Furthermore, these models have enabled investigation of methods by which a wind turbine can provide inertial and frequency response. Conventionally inertial response relies on the derivative of a filtered measurement of system frequency; this introduces either noise, delay or both. This research proposes alternative methods, without these shortcomings, which are shown to have fast response. Overall, wind farms are shown to be technically capable of providing both high and low frequency response; however, holding reserves for low frequency response inevitably requires spilling wind. Wind’s intermittency and full output operation are in tension with the need of the power system for reliable frequency response reserves. This means that whilst wind farms can meet the technical requirements to hold reserves, they bid uncompetitive prices in the market. This research shows that frequency response market prices are likely to rise in future suggesting that the Vanadium Redox Flow Battery is one technology which could enter this market and also complement wind power. Novel control incorporating fuzzy logic to manage the battery is developed to allow a hybrid wind and storage system to aggregate the benefits of frequency response and daily price arbitrage. However, the research finds that the costs of smoothing wind power output are a burden on the store’s revenue, leading to a method of optimising the combined response from an energy store and generator that is the subject of a patent application. Furthermore, whilst positive present value may be derived from this application, the long payback periods do not represent attractive investments without a small storage subsidy.
|
9 |
Estudo de estratégias de rastreamento da corrente e da tensão de saída CA de um conversor do tipo fonte de tensão. / Output voltage and current tracking strategies of a voltage source converter.Martinz, Fernando Ortiz 28 September 2007 (has links)
Este trabalho apresenta algumas estratégias de controle das malhas de rastreamento de tensão e corrente no lado CA de conversores do tipo fonte de tensão com filtro L ou LC. A topologia escolhida para o controle de tensão CA do inversor é a de duas malhas de controle em cascata: malha de tensão e malha de corrente, sendo esta última mais interna no sistema de controle. A metodologia de trabalho utilizada consiste na modelagem do sistema (sistema controlado e controladores), ajuste dos parâmetros do controlador, simulação computacional do sistema \"inversor + controlador\", implementação de alguns controladores propostos utilizando um DSP e testes em um sistema real com inversor. O estudo das técnicas de controle concentra-se inicialmente na estratégia de realimentação de dois estados no domínio de tempo contínuo, evoluindo para estratégias em tempo discreto que consideram o atraso na atuação do inversor devido ao tempo de cálculo do algoritmo de controle. Em tempo discreto, são analisados controladores preditivos para as malhas de tensão e corrente, bem como o emprego de controladores Proporcional-Integral (PI) na malha de tensão. Os dois últimos controladores são testados em um inversor PWM de baixa potência para diversos tipos de carga, com tensão de referência de inversor senoidal em 60Hz e referência contendo harmônicas. / This work presents some control strategies to achieve voltage and current tracking at the AC side of Voltage Source Converters with L or LC output filters. The topology of voltage control is the Multi-loop control with two loops: Voltage (outer loop) and Current Loop (inner loop). The proposed methodology consists in modeling the control system (plant and controllers), tuning of the controller parameters, simulating the complete system including inverter and controller, implementation of the proposed control strategies on a Digital Signal Processor (DSP) and tests in a power converter. The thesis is initially focused on a state variable continuous time controller with two states and then discrete-time strategies which consider the actuation delay due to the time required to evaluate the control algorithm are studied. In these discrete-time models, predictive controllers in voltage and current loops are analyzed, as well as the use of Proportional- Integral (PI) controllers in the Voltage Loop. These two last control topologies are tested in a low-power inverter for several load conditions with sinusoidal 60Hz inverter reference voltage and with harmonic distortion in the inverter reference voltage.
|
10 |
Estudo de estratégias de rastreamento da corrente e da tensão de saída CA de um conversor do tipo fonte de tensão. / Output voltage and current tracking strategies of a voltage source converter.Fernando Ortiz Martinz 28 September 2007 (has links)
Este trabalho apresenta algumas estratégias de controle das malhas de rastreamento de tensão e corrente no lado CA de conversores do tipo fonte de tensão com filtro L ou LC. A topologia escolhida para o controle de tensão CA do inversor é a de duas malhas de controle em cascata: malha de tensão e malha de corrente, sendo esta última mais interna no sistema de controle. A metodologia de trabalho utilizada consiste na modelagem do sistema (sistema controlado e controladores), ajuste dos parâmetros do controlador, simulação computacional do sistema \"inversor + controlador\", implementação de alguns controladores propostos utilizando um DSP e testes em um sistema real com inversor. O estudo das técnicas de controle concentra-se inicialmente na estratégia de realimentação de dois estados no domínio de tempo contínuo, evoluindo para estratégias em tempo discreto que consideram o atraso na atuação do inversor devido ao tempo de cálculo do algoritmo de controle. Em tempo discreto, são analisados controladores preditivos para as malhas de tensão e corrente, bem como o emprego de controladores Proporcional-Integral (PI) na malha de tensão. Os dois últimos controladores são testados em um inversor PWM de baixa potência para diversos tipos de carga, com tensão de referência de inversor senoidal em 60Hz e referência contendo harmônicas. / This work presents some control strategies to achieve voltage and current tracking at the AC side of Voltage Source Converters with L or LC output filters. The topology of voltage control is the Multi-loop control with two loops: Voltage (outer loop) and Current Loop (inner loop). The proposed methodology consists in modeling the control system (plant and controllers), tuning of the controller parameters, simulating the complete system including inverter and controller, implementation of the proposed control strategies on a Digital Signal Processor (DSP) and tests in a power converter. The thesis is initially focused on a state variable continuous time controller with two states and then discrete-time strategies which consider the actuation delay due to the time required to evaluate the control algorithm are studied. In these discrete-time models, predictive controllers in voltage and current loops are analyzed, as well as the use of Proportional- Integral (PI) controllers in the Voltage Loop. These two last control topologies are tested in a low-power inverter for several load conditions with sinusoidal 60Hz inverter reference voltage and with harmonic distortion in the inverter reference voltage.
|
Page generated in 0.0786 seconds