• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Use Of Preplaced Aggregate Concrete For Mass Concrete Applications

Bayer, Raci Ismail 01 June 2004 (has links) (PDF)
Heat of hydration is a source of problem in mass concrete since it causes the difference between the inner and the outer temperatures increase excessively, which leads thermal cracks. The first step in fighting against this problem is to keep the initial temperature of concrete as low as possible. From this point of view, Preplaced Aggregate Concrete (in short PAC) is quite advantageous, because the friction taking place among the coarse aggregates during the mixing operation causes the initial temperature of concrete increase. However, since coarse aggregates are not subjected to the mixing operation in PAC method, comparatively lower initial temperatures can be achieved. On the other hand, making PAC by the conventional injection method is quite troublesome, since it requires special equipment and experienced workmanship. Because of this, it would be very useful to investigate alternative methods for making PAC. In this research, a new method for making PAC has been investigated. The new method is briefly based on increasing the fluidity of the grout by new generation superplasticizers to such an extent that, it fills all the voids in the preplaced coarse aggregate mass when it is poured over, without requiring any injection. In the scope of the study, twelve concrete cube specimens, each with 1 m volume, have been prepared / one of which as conventional concrete, seven of which as PAC by injection method, and four of which as PAC by the new method mentioned above. In order to examine the specimens that have been prepared by three different methods from thermal properties point of view, the difference between the central and the surface temperatures of the specimens have been followed by the thermocouples located in the specimens during preparation. Also, in order to examine the mechanical properties of the specimens, three core specimens have been taken from each specimen at certain ages, compressive strength and modulus of elasticity tests have been carried out on these core specimens. As a result of the experiments it has been observed that, the PAC specimens prepared by injection method performed better from thermal properties point of view, but worse from mechanical properties point of view than conventional concrete. On the other hand, the PAC specimens prepared by the new method have performed both as well as the other PAC specimens from thermal properties point of view, and as well as conventional concrete from mechanical properties point of view.
2

Rheology of grout for preplaced aggregate concrete : investigation on the effect of different materials on the rheology of Portland cement based grouts and their role in the production of preplaced aggregate concrete

Ganaw, Abdelhamed I. January 2012 (has links)
Preplaced aggregate concrete (PAC) is produced by grouting high workability cement based grouts among the voids of compacted coarse aggregate mass. Because of its low shrinkage, PAC has been used for many repair jobs like; tunnel lines, dams and bridge piers. Moreover, it has been used for underwater construction. Grout has a major effect on the properties of produced PAC and well defined grout controls the properties of resulted PAC. The effect of types and amount of powder materials, admixtures, sand and water content on the properties of fresh and hardened grout for the production of PAC have been investigated. Tests on hardened grout and PAC properties have also been carried out to investigate the most important effects. A correlation between hardened properties of grout and PAC has also been analyzed. Grout rheology using four different gradation sands at two different cement-sand and at different w/c ratios ratios has been identified experimentally; no added chemical admixtures or mineral additives had first employed, then superplasticizer (SP) was added at 2% and 1%, and finally a combination of 1% SP and pulverized fuel ash (Pfa) at 20% of the cement weight was employed for all mixes. Grout tests have included two point workability tests by the Viskomat NT, flow time funnel test, Colcrete flow meter test, and water bleeding test. After that, eighteen grout mixes with high workability were produced using three different sands at three w/c ratios and two c/s ratios with 1% SP and Pfa at 20% of the cement weight were designed. Eighteen hardened grout and PAC then produced and their compressive strength and sorptivity were tested. Grout rheology can be defined by the rheology of cement paste employed and the internal distance between sand particles. The effect of sand surface texture on grout rheology is important at very low internal distances. Fresh grout yield stress is the most important property which gives the same degree of sensitivity for all grouts regardless the material type and content used in the mix. There are strong relations between compressive strength of grout and PAC, but less correlation between them in sorptivity test because of the effect high quantity of coarse aggregate of PAC. Sorptivity of PAC is low comparing with different kinds of concrete suggesting its advantage for underwater construction.
3

Rheology of grout for preplaced aggregate concrete. Investigation on the effect of different materials on the rheology of Portland cement based grouts and their role in the production of preplaced aggregate concrete.

Ganaw, Abdelhamed I. January 2012 (has links)
Preplaced aggregate concrete (PAC) is produced by grouting high workability cement based grouts among the voids of compacted coarse aggregate mass. Because of its low shrinkage, PAC has been used for many repair jobs like; tunnel lines, dams and bridge piers. Moreover, it has been used for underwater construction. Grout has a major effect on the properties of produced PAC and well defined grout controls the properties of resulted PAC. The effect of types and amount of powder materials, admixtures, sand and water content on the properties of fresh and hardened grout for the production of PAC have been investigated. Tests on hardened grout and PAC properties have also been carried out to investigate the most important effects. A correlation between hardened properties of grout and PAC has also been analyzed. Grout rheology using four different gradation sands at two different cement-sand and at different w/c ratios ratios has been identified experimentally; no added chemical admixtures or mineral additives had first employed, then superplasticizer (SP) was added at 2% and 1%, and finally a combination of 1% SP and pulverized fuel ash (Pfa) at 20% of the cement weight was employed for all mixes. Grout tests have included two point workability tests by the Viskomat NT, flow time funnel test, Colcrete flow meter test, and water bleeding test. After that, eighteen grout mixes with high workability were produced using three different sands at three w/c ratios and two c/s ratios with 1% SP and Pfa at 20% of the cement weight were designed. Eighteen hardened grout and PAC then produced and their compressive strength and sorptivity were tested. Grout rheology can be defined by the rheology of cement paste employed and the internal distance between sand particles. The effect of sand surface texture on grout rheology is important at very low internal distances. Fresh grout yield stress is the most important property which gives the same degree of sensitivity for all grouts regardless the material type and content used in the mix. There are strong relations between compressive strength of grout and PAC, but less correlation between them in sorptivity test because of the effect high quantity of coarse aggregate of PAC. Sorptivity of PAC is low comparing with different kinds of concrete suggesting its advantage for underwater construction. / Libyan High Education Ministry
4

Grout rheological properties for preplaced aggregate concrete production

Ganaw, Abdelhamed I., Hughes, David C., Ashour, Ashraf 12 1900 (has links)
Yes / This paper investigates the effect of cement based grout rheology on the injection process through coarse aggregate for producing preplaced aggregate concrete. Four different sands were used in the grout production at different water-cement ratios and cement-sand ratios. Superplasticiers and pulverised fuel ash were also employed in the grout production. Coarse aggregate of known weight was compacted into 150 mm cubic forms, and then the grout was injected through a plastic pipe under self weight into the stone ‘skeleton’. It has been found that there are threshold values of the rheological parameters beyond which full injection is not possible. In particular, all grout mixes with and without additives and admixtures exhibited the same yield stress threshold value for full injection, whereas the threshold values for other rheological properties including the grout plastic viscosity, flow time and speed were different according to the materials added to the mix.

Page generated in 0.0676 seconds