Spelling suggestions: "subject:"princípio dde comparação"" "subject:"princípio dee comparação""
1 |
Quasilinear Elliptic Problems with multiple regions of singularities and convexities for the p(x)-Laplacian operatorRamos, Thiago Williams Siqueira 11 December 2017 (has links)
Tese (doutorado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Matemática, 2017. / Submitted by Raquel Viana (raquelviana@bce.unb.br) on 2018-07-03T19:05:00Z
No. of bitstreams: 1
2017_ThiagoWilliamsSiqueiraRamos.pdf: 886895 bytes, checksum: a7e4b17e0eca63c609ceff5b642067e2 (MD5) / Approved for entry into archive by Raquel Viana (raquelviana@bce.unb.br) on 2018-07-09T18:59:32Z (GMT) No. of bitstreams: 1
2017_ThiagoWilliamsSiqueiraRamos.pdf: 886895 bytes, checksum: a7e4b17e0eca63c609ceff5b642067e2 (MD5) / Made available in DSpace on 2018-07-09T18:59:33Z (GMT). No. of bitstreams: 1
2017_ThiagoWilliamsSiqueiraRamos.pdf: 886895 bytes, checksum: a7e4b17e0eca63c609ceff5b642067e2 (MD5)
Previous issue date: 2018-07-03 / Nesta tese estabelecemos resultados de existência, unicidade, multiplicidade e regularidade de soluções para a seguinte classe de problemas quasilineares que podem ser singulares envolvendo expoentes variáveis (veja a equação no resumo original) Na primeira parte, determinamos condições suficientes para existência de única solução em W1;p(x) loc () quando f(x; t) é sublinear em t = 0 e t = +1 para todo x 2 . Na segunda parte, obtemos multiplicidade de solução em W1;p(x)
0 () quando f(x; t) é superlinear em t = +1 em algum subdomínio de . Além disso, permitimos múltiplas regiões de singularidades, tanto no potencial quanto na não linearidade u > 0, enquanto que na segunda parte consideramos _ _ 0. Provamos também um princípio de Comparação para sub e supersolução em W1;p(x) loc () para problemas sublineares em t = 0 e em t = +1 envolvendo o operador p(x)Laplaciano. Entre as técnicas utilizadas estão o Método de Galerkin; Técnica de regularização tipo Di Giorgi; Método de Sub-super solução e o Teorema do Passo da Montanha. / In this thesis we establish results of existence, uniqueness, multiplicity and regularity of solutions for the following class of quasilinear problems that may be singular, involving variable exponents 8< : _p(x)u = c(x)d(x)_(x)u_(x) + _f(x; u) in ; u > 0 in ; u = 0 on @: In the _rst part, we determined su_cient conditions for the existence of a unique solution in W1;p(x) loc () when f(x; t) is sublinear in t = 0 and t = +1 throughout the domain. In the second part, we obtain multiplicity of solution in W1;p(x) 0 () when f(x; t) is superlinear in t = +1 just in a subdomain of in some subdomain of . Besides this, we allow multiple regions of singularity, both for the potential and for the non-linearity u > 0, while in the second part we take _ _ 0. In addition, we prove a Comparison principle for sub and supersolution in W1;p(x) loc () for sublinear problems in t = 0 and t = +1, involving the p(x)Laplacian operator. Among the techniques used are the Galerkin Method; the Di Giorgi regularization technique; the Sub-super solution method; the Mountain Pass Theorem.
|
2 |
Soluções blow-up para equações elípticas com peso singular ou expoente variávelSouza, Luryane Ferreira de 27 February 2015 (has links)
Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Matemática, 2015. / Submitted by Ana Cristina Barbosa da Silva (annabds@hotmail.com) on 2015-04-06T18:29:07Z
No. of bitstreams: 1
2015_LuryaneFerreiradeSouza.pdf: 693916 bytes, checksum: 83f49a91836299a226c4f99c19eab0c4 (MD5) / Approved for entry into archive by Raquel Viana(raquelviana@bce.unb.br) on 2015-04-16T19:13:14Z (GMT) No. of bitstreams: 1
2015_LuryaneFerreiradeSouza.pdf: 693916 bytes, checksum: 83f49a91836299a226c4f99c19eab0c4 (MD5) / Made available in DSpace on 2015-04-16T19:13:15Z (GMT). No. of bitstreams: 1
2015_LuryaneFerreiradeSouza.pdf: 693916 bytes, checksum: 83f49a91836299a226c4f99c19eab0c4 (MD5) / Nesse trabalho consideramos o problema (veja fórmula na dissertação) onde Ω Rn é um domínio limitado ou Ω = Rn, p > 1. Vamos estudar a existência de solução para o problema (1) em dois casos: 1. Ω ≠ Rn, q(x) = q > p - 1 e a(x) é uma função não negativa, que pode ser singular na ᶿ Ω. 2. Ω = Rn, para n ≥ 3, p = 2, a(x) = 1 e q é uma função Holder contínua, q(x) ≥ 1 para ||x|| ≤ R e 0 < q(x) ≤ 1 para ||x|| ≥ R, onde R ≥ 0 é uma constante. Além disso, estudamos a unicidade e comportamento na Ω para a solução do caso 1. / In this work we consider the problem (veja fórmula na dissertação) where Ω Rn is a bounded domain or Ω = Rn, p > 1. We will study existence of solution for
problem (2) in two cases: 1. Ω ≠ Rn, q(x) = q > p - 1 and a(x) is a nonnegative function, wich can be singular on ᶿΩ. 2. Ω = Rn, n ≥ 3, p = 2, a(x) = 1 and q is Holder continuous function, q(x) ≥ 1 for ||x|| ≤ R and 0 < q(x) ≤ 1 for ||x|| ≥ R, where R ≥ 0 is a constant. Moreover, we study uniqueness and behavior on ᶿΩ for solution of the first case.
|
3 |
Soluções globais e não-globais de uma equação parabólica não-linearde Farias Limeira, Renata 31 January 2008 (has links)
Made available in DSpace on 2014-06-12T18:28:36Z (GMT). No. of bitstreams: 2
arquivo4373_1.pdf: 402871 bytes, checksum: 9dcc0f0a26154dced0892572c9fc94cf (MD5)
license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5)
Previous issue date: 2008 / Conselho Nacional de Desenvolvimento Científico e Tecnológico / Estudamos o comportamento das soluções do problema parabólico envolvendo a equação do calor não linear com condição de Dirichlet sobre a fronteira em um conjunto limitado de RN. Introduzimos também a noção de solução fraca para o mesmo problema e estudamos algumas relações com existência de soluções fracas para o problema elíptico estacionário associado. Noções básicas a respeito dos espaços de Lebesgue, espaçoos de Sobolev, teoria de semigrupos e alguns resultados clássicos são tratados. Mostramos o princípio de comparação para o problema parabólico nos sentidos clássico e fraco
|
Page generated in 0.0731 seconds