• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • Tagged with
  • 6
  • 6
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Subvariedades isoparamétricas do espaço Euclidiano / Isoparametric submanifolds of Euclidian space

Chamorro, Jaime Leonardo Orjuela 25 March 2008 (has links)
O presente trabalho tem por objeto fazer uma introdução ao estudo das subvariedades isoparamétricas do espaço Euclidiano. Começamos com uma introdução ao desenvolvimento histórico desses objetos. A seguir apresentamos os conceitos básicos da teoria de subvariedades de formas espaciais. Deduzimos as equações fundamentais de primeira e segunda ordem e demonstramos o teorema fundamental da teoria de subvariedades. Em seguida damos a definição de subvariedade isoparamétrica e desenvolvemos conceitos elementares para o caso do espaço Euclidiano como são normais de curvatura, grupo de Coxeter, câmera de Weyl e variedades paralelas e focais. Provamos dois teoremas referentes à decomposição de subvariedades isoparamétricas do espaço Euclidiano adaptando ferramentas usadas em [HL97] para ocaso de subvariedades isoparamétricas de espaços de Hilbert. Demonstramos o teorema da fatia e discutimos sobre subvariedades isoparamétricas desde o ponto de vista clássico, a saber, aplicações isoparamétricas. Concluímos com alguns exemplos: hipersuperfécies isoparamétricas da esfera e órbitas principais da ação adjunta de um grupo de Lie sobre a respectiva álgebra de Lie. / The goal of this dissertation is to present an introduction to the study of isoparametric submanifolds of Euclidean space. We begin with an introduction to the history of the subject. Then we present the basic results of submanifold theory of space forms. We compute the fundamental equations of first and second order, and we prove the fundamental theorem of submanifold theory. Next, we define isoparametric submanifolds and discuss some basic constructions, as curvature normals, Coxeter groups, Weyl chambers and parallel and focal submanifolds. We prove two decomposition theorems about isoprametric submanifolds using techniques that we learnt from [HL97], paper in which the case of submanifolds of Hilbert spaces is studied. Then we prove slice theorem. We also discuss those submanifold from the classical point of view, namely, isoparametric maps. We finish by explaining some examples: isoparametric hipersurfaces of spheres and principal orbits of the adjoint action of a Lie group on its Lie algebra.
2

Subvariedades isoparamétricas do espaço Euclidiano / Isoparametric submanifolds of Euclidian space

Jaime Leonardo Orjuela Chamorro 25 March 2008 (has links)
O presente trabalho tem por objeto fazer uma introdução ao estudo das subvariedades isoparamétricas do espaço Euclidiano. Começamos com uma introdução ao desenvolvimento histórico desses objetos. A seguir apresentamos os conceitos básicos da teoria de subvariedades de formas espaciais. Deduzimos as equações fundamentais de primeira e segunda ordem e demonstramos o teorema fundamental da teoria de subvariedades. Em seguida damos a definição de subvariedade isoparamétrica e desenvolvemos conceitos elementares para o caso do espaço Euclidiano como são normais de curvatura, grupo de Coxeter, câmera de Weyl e variedades paralelas e focais. Provamos dois teoremas referentes à decomposição de subvariedades isoparamétricas do espaço Euclidiano adaptando ferramentas usadas em [HL97] para ocaso de subvariedades isoparamétricas de espaços de Hilbert. Demonstramos o teorema da fatia e discutimos sobre subvariedades isoparamétricas desde o ponto de vista clássico, a saber, aplicações isoparamétricas. Concluímos com alguns exemplos: hipersuperfécies isoparamétricas da esfera e órbitas principais da ação adjunta de um grupo de Lie sobre a respectiva álgebra de Lie. / The goal of this dissertation is to present an introduction to the study of isoparametric submanifolds of Euclidean space. We begin with an introduction to the history of the subject. Then we present the basic results of submanifold theory of space forms. We compute the fundamental equations of first and second order, and we prove the fundamental theorem of submanifold theory. Next, we define isoparametric submanifolds and discuss some basic constructions, as curvature normals, Coxeter groups, Weyl chambers and parallel and focal submanifolds. We prove two decomposition theorems about isoprametric submanifolds using techniques that we learnt from [HL97], paper in which the case of submanifolds of Hilbert spaces is studied. Then we prove slice theorem. We also discuss those submanifold from the classical point of view, namely, isoparametric maps. We finish by explaining some examples: isoparametric hipersurfaces of spheres and principal orbits of the adjoint action of a Lie group on its Lie algebra.
3

Discrete Surfaces of Constant Ratio of Principal Curvatures

Alhajji, Mohammed 16 November 2021 (has links)
The topic of this thesis is motivated by recent developments in Architectural Geometry, namely Eike Schling’s asymptotic gridshells and progress in solutions for paneling freeform facades. An asymptotic gridshell is fabricated from flat straight lamellas of bendable material such as sheet metal. These strips are then arranged in a grid-like spatial structure, such that the lamellas are orthogonal to a reference surface, which however is not materialized. Differential geometry then tells us that the strips must follow asymptotic curves of that reference surface. The actual construction is simplified if angles at nodes are constant. If that angle is a right angle, one gets minimal surfaces as reference surfaces. If the angle is constant, one obtains negatively curved surfaces with a constant ratio of principal curvatures (CRPC surfaces). Their characteristic parameterizations are equi-angular asymptotic parameterizations. We are also interested in the positively curved CRPC surfaces. Due to the relation between curvatures, they have a one-parameter family of curvature elements, which facilitates cost-effective paneling solutions through mold-reuse. Our approach to positively curved CRPCS surfaces is again based on equi-angular characteristic parameterizations. These characteristic parameterizations are conjugate and symmetric with respect to the principal curvature directions. After a review of the required results from classical surface theory, we first present a derivation of rotational CRPC surfaces. By simple geometric considerations one can find their characteristic parameterizations. In this way we add some new insight to this known class of surfaces. However, it turns out to be very hard to come up with explicit results on non-rotational CRPC surfaces. This is in big contrast to the special case of minimal surfaces which are characterized be the constant principal curvature ratio -1. Due to the difficulties in handling smooth CRPC surfaces, we turn to discrete models in form of constrained quad meshes. The discrete models belong to the area of Discrete Differential Geometry. There, one does not discretize equations from the smooth theory, but fundamental concepts of the theory. We introduce the basic structures needed in this context: asymptotic nets, conjugate nets and principal symmetric nets. The latter are a recent development in discrete differential geometry and characterized by spherical vertex stars. This means that a vertex of the quad mesh and its four connected neighbors lie on a sphere. If that sphere degenerates to a plane at all vertices, one has the classical discrete asymptotic parameterization as an A-net. Several ways to discretize the constant intersection angle are presented. The actual computation of discrete CRPC surfaces is performed with numerical optimization with an appropriately regularized Gauss-Newton algorithm for solving a nonlinear least squares problem. Optimization requires initial configurations. Those can come from the known classes of CRPC surfaces such as rotational surfaces of minimal surfaces. The latter case yields some surprising results on negatively curves CRPC surfaces of nontrivial topology. In general, such discrete models can serve as a guiding line for future research on the theoretical side. This is briefly indicated in the final discussion on future research directions.
4

Hipersuperfícies em espaços produto com curvaturas principais constantes / Hypersurfaces in product spaces with constant principal curvatures

Santos, Eliane da Silva dos 29 November 2013 (has links)
Neste trabalho, classificamos localmente as hipersuperfcies dos espaços produto S n × R e H n × R, n 6 = 3, com g curvaturas principais constantes e distintas, g {1, 2, 3}. Verifi- camos que tais hipersuperfcies são isoparamétricas de Q nc × R. Além disso, encontramos uma condição necessária e suficiente para que uma hipersuperfcie isoparamétrica de Q nc × R que possui fibrado normal plano, quando observada como uma subvariedade de codimensão dois de R n+2 contendo S n × R e de L n+2 contendo H n × R, tenha curvaturas principais constantes. / In this work, we classify locally the hypersurfaces in product spaces S n × R and H n × R, n 6 = 3, with g distinct constant principal curvatures, g {1, 2, 3}. We verify that such hy- persurfaces are isoparametric in Q nc × R. Furthermore, we find a necessary and sufficient condition for an isoparametric hypersurface in Q nc × R with flat normal bundle, when re- garded as a submanifold with codimension two of the flat spaces R n+2 containing S n × R and L n+2 containing H n × R, having constant principal curvatures.
5

Hipersuperfícies conformemente euclidianas com curvatura média ou escalar constante

Rei Filho, Carlos Gonçalves do 10 November 2016 (has links)
Submitted by Aelson Maciera (aelsoncm@terra.com.br) on 2017-05-31T16:42:01Z No. of bitstreams: 1 TeseCGRF.pdf: 1149604 bytes, checksum: 8b0a42d65883e0af42693ac90b36059a (MD5) / Approved for entry into archive by Ronildo Prado (ronisp@ufscar.br) on 2017-05-31T18:41:10Z (GMT) No. of bitstreams: 1 TeseCGRF.pdf: 1149604 bytes, checksum: 8b0a42d65883e0af42693ac90b36059a (MD5) / Approved for entry into archive by Ronildo Prado (ronisp@ufscar.br) on 2017-05-31T18:41:18Z (GMT) No. of bitstreams: 1 TeseCGRF.pdf: 1149604 bytes, checksum: 8b0a42d65883e0af42693ac90b36059a (MD5) / Made available in DSpace on 2017-05-31T19:42:46Z (GMT). No. of bitstreams: 1 TeseCGRF.pdf: 1149604 bytes, checksum: 8b0a42d65883e0af42693ac90b36059a (MD5) Previous issue date: 2016-11-10 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / In this work we study conformally flat hypersurfaces f: M3 ^ Q4(c) with three distinct principal curvatures in a space form with constant sectional curvature c, under the assumption that either its mean curvature H or its scalar curvature S is constant. In case H is constant, first we extend to any c G R a theorem due to Defever when c = 0 and show that there is no such hypersurface if H = 0. Our main results are for the minimal case H = 0. If c = 0, we prove that f (M3) is an open subset of a generalized cone over a Clifford torus in an umbilical hypersurface Q4(c) C Q4(c), c > 0, with c > c if c > 0. For c = 0, we show that, besides the cone over the Clifford torus in S3 C R4, there exists precisely a one-parameter family of (congruence classes of) minimal isometric immersions f: M3 ^ R4 with three distinct principal curvatures of simply-connected conformally flat Riemannian manifolds. Assuming S to be constant, we only study the case c = 0. We prove that f (M3) is an open subset of a cylinder over a surface of nonzero constant Gauss curvature in R3. / Nesta tese estudamos hipersuperfícies conformemente euclidianas f : M3 ^ Q4(c), com três curvaturas principais distintas e curvatura média H ou curvatura escalar S constante, em formas espaciais com curvatura seccional c. No caso em que a curvatura média H é constante, inicialmente estendemos para c arbitrário um resultado provado por Defever [10] quando c =0 e mostramos que uma tal hipersuperfície não existe se H = 0. Nossos principais resultados são para o caso mínimo H = 0. Se c = 0, mostramos que f (M3) é um subconjunto aberto de um cone generalizado sobre um toro de Clifford em uma hipersuperfície umbílica Q3(c) C Q4(c), c > 0, com c > c se c > 0. Para c = 0, mostramos que, além do cone sobre o toro de Clifford em S3 C R4, existe precisamente uma família a 1-parâmetro de hipersuperfícies conformemente euclidianas com três curvaturas principais distintas duas a duas não congruentes, sendo o cone sobre o toro de Clifford o elemento singular da família. No caso em que a curvatura escalar é constante, estudamos apenas o caso c = 0. Mostramos, nesse caso, que f (M3) é um subconjunto aberto de um cilindro sobre uma superfície de curvatura Gaussiana constante do espaço euclidiano R3.
6

Optimization Of Zonal Wavefront Estimation And Curvature Measurements

Zou, Weiyao 01 January 2007 (has links)
Optical testing in adverse environments, ophthalmology and applications where characterization by curvature is leveraged all have a common goal: accurately estimate wavefront shape. This dissertation investigates wavefront sensing techniques as applied to optical testing based on gradient and curvature measurements. Wavefront sensing involves the ability to accurately estimate shape over any aperture geometry, which requires establishing a sampling grid and estimation scheme, quantifying estimation errors caused by measurement noise propagation, and designing an instrument with sufficient accuracy and sensitivity for the application. Starting with gradient-based wavefront sensing, a zonal least-squares wavefront estimation algorithm for any irregular pupil shape and size is presented, for which the normal matrix equation sets share a pre-defined matrix. A Gerchberg–Saxton iterative method is employed to reduce the deviation errors in the estimated wavefront caused by the pre-defined matrix across discontinuous boundary. The results show that the RMS deviation error of the estimated wavefront from the original wavefront can be less than λ/130~ λ/150 (for λ equals 632.8nm) after about twelve iterations and less than λ/100 after as few as four iterations. The presented approach to handling irregular pupil shapes applies equally well to wavefront estimation from curvature data. A defining characteristic for a wavefront estimation algorithm is its error propagation behavior. The error propagation coefficient can be formulated as a function of the eigenvalues of the wavefront estimation-related matrices, and such functions are established for each of the basic estimation geometries (i.e. Fried, Hudgin and Southwell) with a serial numbering scheme, where a square sampling grid array is sequentially indexed row by row. The results show that with the wavefront piston-value fixed, the odd-number grid sizes yield lower error propagation than the even-number grid sizes for all geometries. The Fried geometry either allows sub-sized wavefront estimations within the testing domain or yields a two-rank deficient estimation matrix over the full aperture; but the latter usually suffers from high error propagation and the waffle mode problem. Hudgin geometry offers an error propagator between those of the Southwell and the Fried geometries. For both wavefront gradient-based and wavefront difference-based estimations, the Southwell geometry is shown to offer the lowest error propagation with the minimum-norm least-squares solution. Noll’s theoretical result, which was extensively used as a reference in the previous literature for error propagation estimate, corresponds to the Southwell geometry with an odd-number grid size. For curvature-based wavefront sensing, a concept for a differential Shack-Hartmann (DSH) curvature sensor is proposed. This curvature sensor is derived from the basic Shack-Hartmann sensor with the collimated beam split into three output channels, along each of which a lenslet array is located. Three Hartmann grid arrays are generated by three lenslet arrays. Two of the lenslets shear in two perpendicular directions relative to the third one. By quantitatively comparing the Shack-Hartmann grid coordinates of the three channels, the differentials of the wavefront slope at each Shack-Hartmann grid point can be obtained, so the Laplacian curvatures and twist terms will be available. The acquisition of the twist terms using a Hartmann-based sensor allows us to uniquely determine the principal curvatures and directions more accurately than prior methods. Measurement of local curvatures as opposed to slopes is unique because curvature is intrinsic to the wavefront under test, and it is an absolute as opposed to a relative measurement. A zonal least-squares-based wavefront estimation algorithm was developed to estimate the wavefront shape from the Laplacian curvature data, and validated. An implementation of the DSH curvature sensor is proposed and an experimental system for this implementation was initiated. The DSH curvature sensor shares the important features of both the Shack-Hartmann slope sensor and Roddier’s curvature sensor. It is a two-dimensional parallel curvature sensor. Because it is a curvature sensor, it provides absolute measurements which are thus insensitive to vibrations, tip/tilts, and whole body movements. Because it is a two-dimensional sensor, it does not suffer from other sources of errors, such as scanning noise. Combined with sufficient sampling and a zonal wavefront estimation algorithm, both low and mid frequencies of the wavefront may be recovered. Notice that the DSH curvature sensor operates at the pupil of the system under test, therefore the difficulty associated with operation close to the caustic zone is avoided. Finally, the DSH-curvature-sensor-based wavefront estimation does not suffer from the 2π-ambiguity problem, so potentially both small and large aberrations may be measured.

Page generated in 0.0697 seconds