• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1004
  • 168
  • 135
  • 104
  • 93
  • 70
  • 51
  • 23
  • 15
  • 13
  • 13
  • 11
  • 10
  • 10
  • 9
  • Tagged with
  • 2106
  • 791
  • 401
  • 319
  • 300
  • 198
  • 179
  • 163
  • 158
  • 154
  • 121
  • 120
  • 116
  • 114
  • 108
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
271

3D-printing : a new challenge for intellectual property?

Fuhrmann, Thomas January 2015 (has links)
The most important rights, which state such a balance between these two parties, are the rights of intellectual property. Thus, an important question is to what extent 3D-printing conflicts with intellectual property rights. In general, intellectual property balances the rights between the owners of genuine products and their use through third parties. On the one hand the intellectual property rights give exclusive rights to the genuine owners, on the other hand they give as well some important exceptions for the use of third parts material. Hence, the purpose of this work is to examine, which intellectual property rights are affected by the production of a 3D-printed object. In each of the following chapters I will look at the different categories of intellectual property rights. I will examine in how far the creators of a CAD, the uploaders who upload a CAD on a website for a free or commercial download, the website owners who facilitate that uploads and the printers, whether private or with a commercial purpose, may be in conflict with any intellectual property rights. The most important intellectual property rights, which could be affected, are copyright, patents, registered designs, trade marks and passing off. For the present investigation it will be necessary to have a closer look at the different steps of the developing process of a 3D-printed product. More precisely, we have to differentiate between the creation of the CAD, the uploading of a CAD and finally the home-printing or the printing on demand through a specialised company. The aim of this work is to show how these single steps conflict with intellectual property rights and how the different actors in this process are liable for any infringing activity and in how far their activity is covered by any exception. Furthermore, we will also examine whether current legislation and jurisdiction appropriately address issues brought about by this new technology. Because of the reason, that the issue of 3D-printing in relation to intellectual property is quite a new one, this work will occasionally have a look abroad to other jurisdiction how they already dealt with similar problems. With this in mind, especially the US, European and German jurisdiction and laws will be regarded.
272

The legibility of upper and lower case letters on overhead projection transparencies with Grade VIII students under classroom conditions.

Pierce, Chester 01 January 1969 (has links) (PDF)
No description available.
273

RAPID MAGNETIC PRINTING OF 3D CELLULAR STRUCTURES USING MAGNETIC CELL BIOINKS

Mishriki, Sarah January 2023 (has links)
In this thesis, a rapid magnetic printing technique has been developed for contactless, label-free, and scaffold-free printing of three dimensional (3D) cellular structures in vitro. The biological inks (bioinks) used to form these structures were composed of cells suspended in a liquid medium. Development of this technique was based on exploiting the inherent magnetic susceptibility of cells. Since cells and their liquid medium are diamagnetic (negative magnetic susceptibility), a paramagnetic salt hydrate, gadopentatic acid (Gd-DTPA), was added to the liquid medium to increase its magnetic susceptibility. When a magnetic field was applied, the host fluid containing the paramagnetic salt was towards regions of high magnetic field strength, displacing the cells towards regions towards regions of low magnetic field strength. This rapid printing technique using magnetic cell bioinks was first described using whole blood to form various structures including spherical clusters (spheroids), strips, and three-pointed stars. This demonstration verified the printing technique as a safe and non-toxic method. Subsequent studies were performed using a frequently studied human breast cancer cell line, Michigan Cancer Foundation-7 (MCF-7), to develop a thorough protocol using mammalian cells. Here, the printing method was used to form 3D cellular structures on ultra-low attachment (ULA) and 2.5D cellular structures on tissue-culture-treated (TCT) surfaces. These geometries were produced within 6 hours with high reproducibility. The use of a co-culture on TCT surfaces using MCF-7 and human umbilical vein endothelial cells (HUVECs) and on ULA surfaces using MD Anderson metastatic breast-231 (MDA-MB-231) and embryonic mouse fibroblast (3T3) cells demonstrated the observance of unique cellular interactions and improved printing abilities (accelerated time and improved reproducibly) of the structures printed with magnetic inks, respectively. The use of magnetic cell inks in research and clinical settings can accelerate the development of medical innovations such as drug discovery, personalized medicine, and treatment of disease. / Thesis / Doctor of Philosophy (PhD) / In this thesis, a rapid magnetic printing technique has been developed for contactless, label-free, and scaffold-free printing of three dimensional (3D) cellular structures in vitro. The biological inks (bioinks) used to form these structures were composed of cells suspended in a liquid medium. Development of this technique was based on exploiting the inherent magnetic susceptibility of cells. Since cells and their liquid medium are diamagnetic (negative magnetic susceptibility), a paramagnetic salt hydrate, gadopentatic acid (Gd-DTPA), was added to the liquid medium to increase its magnetic susceptibility. When a magnetic field was applied, the host fluid containing the paramagnetic salt was towards regions of high magnetic field strength, displacing the cells towards regions towards regions of low magnetic field strength. This rapid printing technique using magnetic cell bioinks was first described using whole blood to form various structures including spherical clusters (spheroids), strips, and three-pointed stars. This demonstration verified the printing technique as a safe and non-toxic method. Subsequent studies were performed using a frequently studied human breast cancer cell line, Michigan Cancer Foundation-7 (MCF-7), to develop a thorough protocol using mammalian cells. Here, the printing method was used to form 3D cellular structures on ultra-low attachment (ULA) and 2.5D cellular structures on tissue-culture-treated (TCT) surfaces. These geometries were produced within 6 hours with high reproducibility. The use of a co-culture on TCT surfaces using MCF-7 and human umbilical vein endothelial cells (HUVECs) and on ULA surfaces using MD Anderson metastatic breast-231 (MDA-MB-231) and embryonic mouse fibroblast (3T3) cells demonstrated the observance of unique cellular interactions and improved printing abilities (accelerated time and improved reproducibly) of the structures printed with magnetic inks, respectively. The use of magnetic cell inks in research and clinical settings can accelerate the development of medical innovations such as drug discovery, personalized medicine, and treatment of disease.
274

Phillip Wall: Studies in Field Imagery Utilizing Screen Printing and Low Relief Techniques

Bartholomew, Anthony J. 24 April 2008 (has links)
No description available.
275

Music publishing in Canada : 1800-1867

Calderisi, Maria. January 1976 (has links)
No description available.
276

Jet Breakup Dynamics of Inkjet Printing Fluids

Sundara Rajan, Kashyap 02 April 2021 (has links) (PDF)
Continuous InkJet (CIJ) printing is a common 2-Dimensional printing technique that creates jets of ink that breakup into drops as they are propelled towards a substrate to create a print. Inkjet printing has been used not only to print on paper, but to manufacture a variety of devices including OLEDs, solar cells and microfluidic devices. In many cases, the ‘ink’ consists of a polymer dissolved in a volatile solvent. As this ink is sprayed on to the substrate, the solvent evaporates, leaving the polymer behind as the print. The addition of the polymer alters the physics of the problem significantly enough that it varies greatly from jetting only a fluid with nothing dissolved in it. Polymers impart viscoelasticity to the solution, creating ink jets that are long-lived and difficult to break into droplets. In order to maintain the formation of drops in a repeatable, uniform fashion, a disturbance of known magnitude is imposed upon the jet. While jetting a liquid with no additives in it, this disturbance governed jet breakup leads to the formation of satellite drops, smaller drops of fluid in-between the main jet drops. Satellite drops are an undesirable occurrence in inkjet printing because of their unpredictable behavior and potential to affect the quality of the print. However, the addition of polymers to the liquid can control and potentially suppress the formation of these satellite drops, greatly improving the print quality. The elasticity of iv the polymer and its ability to influence the jet behavior and formation of satellite drops is highly dependent on multiple factors including the backbone rigidity, molecular weight and the concentration in which it is present in the fluid. Strongly viscoelastic effects have a marked effect on the jet and their presence can be quantified quite easily. However, some polymers show weak viscoelastic behavior while present in the ink fluids and may or may not affect the jetting process. The objective of this study is to examine such a class of polymeric fluids that are weakly viscoelastic in the context of inkjet printing and satellite drop formation. Firstly, the fluids are tested in an extensional rheology setup called Capillary Breakup Extensional Rheometry – Drop-on-Substrate (CaBER-DoS) to quantify their extensional properties. Then, they are tested in an emulated inkjet printing setup. The goal is to quantify the impact of the aforementioned factors on jetting and using satellite drop behavior as a guiding metric to understanding viscoelastic behavior in inkjet printing fluids.
277

Government Printing Patronage and the Press, 1829-1837

Snapp, Elizabeth M. 05 1900 (has links)
National and selected local newspapers, executive and congressional sources from 1829-1837, personal correspondence, and autobiographies are studied to consider the use of public funds for government printing patronage. A limited examination of printing patronage for the years prior to and immediately following the Jackson administration was made for comparative purposes. The printing patronage of various departments of the executive branch, including especially the publication of the laws, and of both houses of Congress are studied, This study shows that congressional printing funds were far more extensive than the executive printing funds, The thesis concludes that during the Jackson administration the press patronage of the executive branch served as a counterbalance to the substantial patronage available from Congress and the Bank to the established presses,
278

Techniques of Music Printing in the United States, 1825-1850

Mayo, Maxey H. (Maxey Huffman) 12 1900 (has links)
Music printing in the United States between 1825 and 1900 was in a constant state of change as older techniques improved and new processes were invented. Beginning with techniques and traditions that had originated in Europe, music printers in America were challenged by the continuous problem of efficiently and economically creating ways of transferring a music image to the printed page. This study examines the music printing techniques, equipment, and presses of the period, as well as the progression from music type to engraved plate and lithograph stone. A study of the techniques of altering music printing plates helps explain the differences occurring in prints from the same edition and will help further our understanding of this important aspect of music historiography.
279

Designing for digital : skill sets needed to design for variable data /

Jordan, Jessica. January 2009 (has links)
Thesis (M.S.)--Rochester Institute of Technology, 2009. / Typescript. Includes bibliographical references (leaves 77-80).
280

Effect of fabric structure on liquid transport, ink jet drop spreading and printing quality

Mhetre, Shamal Kamalakar 03 February 2009 (has links)
The effect of fabric structure and yarn-to-yarn liquid migration on the overall liquid transport behavior of fabrics is investigated in this research. Sorption of liquid from an unlimited reservoir as well as sorption of a limited quantity of liquid by fabrics representing different structural parameters is studied in detail. Sorption of a limited quantity of liquid is studied by performing drop spreading experiments on fabrics. The spreading and wicking of micron sized drops which are deposited on textile fabrics during ink jet printing is also studied. How the fabric structure related variables influence the spreading of ink drops and how exactly spreading influences printing quality is investigated in this research. Results showed that the wicking in fabrics is determined by the wicking rates of the yarns, thread spacing and more importantly by the rate at which liquid migrates from longitudinal to transverse threads and again from transverse threads back to longitudinal threads. Drop spreading rates were also determined by fabric structure. In general, compact and thinner fabrics showed highest drop spreading rates. Drop spreading rates are primarily affected by the manner and the rate at which liquid migrates from yarn to yarn. Analysis of the results of ink jet printing of pigment ink on textile fabrics showed that excessive drop spreading and higher line widths were observed where continuous and narrow capillaries prevail on the surface of yarns. Yarn surface characteristics are more important than fabric construction parameters.

Page generated in 0.0723 seconds