• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 25
  • 2
  • 1
  • 1
  • Tagged with
  • 32
  • 32
  • 20
  • 18
  • 13
  • 13
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Monitoring and diagnosing the mean vector and covariance matrix of multistage processes /

Li, Yanting. January 2008 (has links)
Thesis (Ph.D.)--Hong Kong University of Science and Technology, 2008. / Vita. Includes bibliographical references (leaves 99-110). Also available in electronic version.
2

Model migration based on process similarity /

Lu, Junde. January 2008 (has links)
Thesis (Ph.D.)--Hong Kong University of Science and Technology, 2008. / Includes bibliographical references (leaves 184-202). Also available in electronic version.
3

Investigations of Slag Properties and Reactions

Persson, Mikael January 2007 (has links)
The present dissertation describes the efforts directed towards the development of computational tools to support process modeling. This work is also a further development of the Thermoslag® software developed in the Division of Materials Process Science, KTH. The essential parts of the thesis are a) development of a semi-empirical model for the estimation of the molar volumes/densities of multicomponent slags with a view to incorporate the same in the model for viscosities and b) further development of the viscosity model for application towards fluoride- and manganese containing slags, as for example, mould flux slags and manganese slags used in ferromanganese production. c) estimating fluoride emissions from industrial slags and mould fluxes. d) study the reaction between carbon particles, hematite containing slags and in oxygen containing atmosphere. The model for the estimation of molar volume is based on a correlation between the relative integral molar volume of a slag system and the relative integral molar enthalpies of mixing of the same system. The integral molar enthalpies of the relevant systems could be evaluated from the Gibbs energy data available in the Thermoslag® software. The binary parameters were evaluated from experimental measurements of the molar volumes. Satisfactory correlations were obtained in the case of the binary silicate and aluminate systems. The model was extended to ternary and multi component systems by computing the molar volumes using the binary parameters. The model predictions showed agreements with the molar volume data available in literature. The model was used to estimate the molar volumes of industrial slags as well as to trace the trends in molar volume due to enable prediction of molar volumes of slags that are compatible with the thermodynamic data available. With a view to extend the existing model for viscosities to F--containing slags, the viscosities of mould flux slags for continuous casting in steel production have been investigated in the present work. The measurements were carried out utilizing the rotating cylinder method. Seven mould fluxes used in the Swedish steel industry and the impact of Al2O3 pick up by mould flux slags on viscosities were included in the study. The results showed that even relatively small additions of Al2O3 are related with a significant increase in viscosity. A similar experimental technique was employed to estimate the viscosity of twelve synthetic slags corresponding to composition of the raw materials used in ferromanganese production. The flow rate of the liquid slag, which is determined by the slag viscosity, is an important parameter affecting the reduction rate of manganese oxide. The results show a clear correlation between manganese oxide content and viscosity. An increase of MnO in the slag lowers the viscosity. The measured viscosities have also been connected to the structure of the silicates. The fluoride loss from the binary slag systems Al2O3-SiO2, CaO-SiO2 and MgOSiO2 with additions of CaF2 was studied by thermogravimetric (TGA) studies. The Arrhenius activation energy for the evaporation reaction of fluorides was found to be dependent on temperature and slag chemistry for the slags studied. A correlation between the activation energy for fluoride evaporation and activity of SiO2 in the slag melt was established. This relationship obtained for the binary systems appears also to be suitable for the ternary systems Al2O3-CaO-SiO2 with CaF2 addition, which indicates a possibility to estimate the fluoride emissions from industrial slags and mould fluxes. A Confocal Scanning Laser Microscopy was used to investigate the reaction between carbon particles in hematite containing slags and in oxygen containing atmosphere. Experiments with varying temperature and slags with varying FeOx content were carried out. The general trends were that the particle size decrease was more rapid with increase of FeOx amount and/or temperature was increased. / QC 20100812
4

Monitoring and interpreting multistage and multicategory processes

Duran Lopez, Rodrigo Ignacio, January 2009 (has links)
Thesis (Ph. D.)--Rutgers University, 2009. / "Graduate Program in Industrial and Systems Engineering." Includes bibliographical references (p. 114-120).
5

Open architecture control for intelligent machining systems /

Teltz, Richard W. January 1998 (has links)
Thesis (Ph.D.) -- McMaster University, 1998. / Includes bibliographical references (leaves 139-147). Also available via World Wide Web.
6

INFLUENCE OF QUENCH RATE ON THE HARDNESS OBTAINED AFTER ARTIFICIAL AGEING OF AN Al-Si-Mg ALLOY

Fracasso, Federico January 2010 (has links)
No description available.
7

INFLUENCE OF QUENCH RATE ON THE HARDNESS OBTAINED AFTER ARTIFICIAL AGEING OF AN Al-Si-Mg ALLOY

Fracasso, Federico January 2010 (has links)
No description available.
8

Implementation of functional safety in a robotic manufacturing cell using IEC 61508 standard and Siemens technology /

Kamtekar, Darshana M. January 2009 (has links)
Thesis (M.S.)--Rochester Institute of Technology, 2009. / Typescript. Includes bibliographical references (leaves 209-213).
9

Návrh změn výrobního procesu se zaměřením na rozšíření layoutu / The Draft Amendments to the Production Process, with a Focus on Expanding a Layout

Teknős, Oliver January 2015 (has links)
Master´s thesis deals with the issue of improving production processes in engineering company, which is expanding it´s existing facilities with the new hall. The company is engaged in manufacturing gears and gearboxes. The thesis deals with the design of new layout in new and former facilities in order to optimize material flow, costs and minimize production time.
10

Characterisation of uncured carbon fibre composites

Erland, Samuel January 2017 (has links)
The weight saving benefits of carbon fibre composites have been keenly adopted by civil aviation, with over 50% of the weight of modern designs coming from the carbon fibre components. The rapid rise in demand for this new material has led to the development of fully automated manufacturing techniques, improving rate of production and repeatability of manufacture. However, this rapid development, combined with a constant drive for increased rate of manufacture from industry can result in the formation of critical defects in the more complicated structural components. Manufacturing complex aeronautical structures from carbon fibre leads to a number of interesting mechanical problems. Forcing a multi-layered laminate to conform to a curved geometry requires individual layers to move relative to one another in order to relieve various forming-induced stresses. If the layers are constrained the dissipation of these stresses in the form of interply shear is prevented and a wide range of defects can occur, compromising the integrity of the final component. One of the most important of these is fibre wrinkling, which is effectively the buckling of one or more layers within an uncured laminate. This buckle results in a localised change in fibre orientation, which can result in a significant knockdown in part strength. A large amount of research has been conducted on carbon fibre in its cured state, when it exists as elastic fibres in an elastic matrix. Manufacturing occurs when the material is uncured however, with modern processes typically using fibres which are pre-impregnated with resin in order to reduce void content and aid fibre placement. A ply of uncured material therefore consists of stiff elastic fibres suspended in a very weak liquid viscoelastic material, whose properties are hugely influenced by temperature and rate of deformation. This thesis builds a better understanding of the mechanics involved in forming, using a series of characterisation techniques developed drawing from techniques in the literature. Part of the process involves the fitting of a one-dimensional viscoelasto-plastic model to experimental test data in order to represent the material response when shearing two plies about their interface. This model shows the material response to be dominated by the viscoelastic resin at low temperatures, before becoming frictional and fibre dominated at higher temperatures. In terms of optimum formability, a region exists in the transition from the viscous to frictional behaviour at which resistance to forming is minimised. With this data alone, optimum forming parameters such as rate of deformation, pressure and temperature can be suggested based on the material being used, along with design parameters such as stacking sequence. Another important characteristic which must be understood when considering ply wrinkling is the bending stiffness of uncured prepreg, both as a single ply and when combined to form a small laminate. A wrinkle is in effect the buckling of a single or small number of plies within a laminate, therefore by understanding the bending stiffness and process-induced loading we can begin to predict whether or not wrinkles are likely to occur for a particular manufacturing regime. In order to assess bending stiffness, a modified Dynamic Mechanical Analysis process is employed, replacing the standard Engineers Bending Theory calculations with a Timoshenko element to capture the large degree of intraply shear experienced in the bending of uncured prepreg. Finally, a small laminate scale demonstrator is considered in which a 24-ply laminate is consolidated into a female tool in such a way as to induced maximum shear strain between the plies, in order that the optimum forming parameters predicted by the characterisation tests might be validated. A simple energy minimisation model is used to predict the variation in consolidation strain around the part due to resistance to shear, using material parameters from the model describing the inter-ply shear test data. These parameters are also used to inform a novel modelling technique which has been developed parallel to this thesis, which is validated against the experimental results, and shows how the characterisation techniques can be used to advance simulation methods aimed at reducing the development time for new carbon fibre components. This work provides a set of tests and methodologies for the accurate characterisation of the behaviour of uncured carbon fibre during forming. The models developed alongside these tests allow for a detailed interrogation of the results, providing valuable insight into the mechanics behind the observed material behaviour and enabling informed decisions to be made regarding the forming process in order that the occurrence of defects might be minimised. The primary aim has been to provide a set of vital input parameters for novel, complex process modelling techniques under development, which has been achieved and validated experimentally.

Page generated in 0.1172 seconds