• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 56
  • 32
  • 8
  • Tagged with
  • 94
  • 94
  • 33
  • 24
  • 21
  • 20
  • 18
  • 17
  • 17
  • 16
  • 15
  • 13
  • 13
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Conditionnement de processus markoviens

Marchand, Jean-Louis 25 June 2012 (has links) (PDF)
Le but de cette thèse est de décrire la loi conditionnelle d'un processus markovien multidimensionnel connaissant la valeur de certaines combinaisons linéaires de ses coordonnées à des instants donnés. La description recherchée consiste à mettre en évidence un processus de même type, facile à simuler, dont la loi est équivalente à la loi conditionnelle ciblée.La classe principalement étudiée est celle des processus à diffusion. Dans un premier temps, des techniques de grossissement de filtration (Jacod 1985) permettent de déterminer les paramètres de l'équation différentielle stochastique vérifiée par le processus conditionnel. Cependant, on s'aperçoit alors que la dérive n'est pas explicite, car celle-ci dépend des densités de transition du processus initial, inconnues en général. Ceci rend impossible,une simulation directe par exemple à l'aide d'un schéma d'Euler. Afin de pallier ce défaut, nous proposons une alternative, dans l'esprit de Delyon et Hu (2006). L'approche consiste à proposer une équation différentielle stochastique de paramètres explicites, dont la solution est de loi équivalente à la loi conditionnelle. Une application en collaboration avec Anne Cuzol et Etienne Mémin de l'INRIA, dans le cadre des écoulements fluides est également présentée. On applique la méthode proposée précédemment à un modèle stochastique inspiré des équations de Navier-Stokes. Enfin, la classe des processus markoviens à sauts est également abordée.
62

Étude multi-échelle de modèles probabilistes pour les systèmes excitables avec composante spatiale.

Genadot, Alexandre 04 November 2013 (has links) (PDF)
L'objet de cette thèse est l'étude mathématique de modèles probabilistes pour la génération et la propagation d'un potentiel d'action dans les neurones et plus généralement de modèles aléatoires pour les systèmes excitables. En effet, nous souhaitons étudier l'influence du bruit sur certains systèmes excitables multi-échelles possédant une composante spatiale, que ce soit le bruit contenu intrinsèquement dans le système ou le bruit provenant du milieu. Ci-dessous, nous décrivons d'abord le contenu mathématique de la thèse. Nous abordons ensuite la situation physiologique décrite par les modèles que nous considérons. Pour étudier le bruit intrinsèque, nous considérons des processus de Markov déterministes par morceaux à valeurs dans des espaces de Hilbert ("Hilbert-valued PDMP"). Nous nous sommes intéressés à l'aspect multi-échelles de ces processus et à leur comportement en temps long. Dans un premier temps, nous étudions le cas où la composante rapide est une composante discrète du PDMP. Nous démontrons un théorème limite lorsque la composante rapide est infiniment accélérée. Ainsi, nous obtenons la convergence d'une classe de "Hilbert-valued PDMP" contenant plusieurs échelles de temps vers des modèles dits moyennés qui sont, dans certains cas, aussi des PDMP. Nous étudions ensuite les fluctuations du modèle multi-échelles autour du modèle moyenné en montrant que celles-ci sont gaussiennes à travers la preuve d'un théorème de type "central limit". Dans un deuxième temps, nous abordons le cas où la composante rapide est elle-même un PDMP. Cela requiert de connaître la mesure invariante d'un PDMP à valeurs dans un espace de Hilbert. Nous montrons, sous certaines conditions, qu'il existe une unique mesure invariante et la convergence exponentielle du processus vers cette mesure. Pour des PDMP dits diagonaux, la mesure invariante est explicitée. Ces résultats nous permettent d'obtenir un théorème de moyennisation pour des PDMP "rapides" couplés à des chaînes de Markov à temps continu "lentes". Pour étudier le bruit externe, nous considérons des systèmes d'équations aux dérivées partielles stochastiques (EDPS) conduites par des bruits colorés. Sur des domaines bornés de $\mathbb{R}^2$ ou $\mathbb{R}^3$, nous menons l'analyse numérique d'un schéma de type différences finies en temps et éléments finis en espace. Pour une classe d'EDPS linéaires, nous étudions l'erreur de convergence forte de notre schéma. Nous prouvons que l'ordre de convergence forte est deux fois moindre que l'ordre de convergence faible. Par des simulations, nous montrons l'émergence de phénomènes d'ondes ré-entrantes dues à la présence du bruit dans des domaines de dimension deux pour les modèles de Barkley et Mitchell-Schaeffer.
63

Graphes et marches aléatoires

De Loynes, Basile 06 July 2012 (has links) (PDF)
L'étude des marches aléatoires fait apparaître des connexions entre leurs propriétés algébriques, géométriques ou encore combinatoires et leurs propriétés stochastiques. Si les marches aléatoires sur les groupes - ou sur des espaces homogènes - fournissent beaucoup d'exemples, il serait appréciable d'obtenir de tels résultats de rigidité sur des structures algébriques plus faibles telles celles de semi-groupoide ou de groupoide. Dans cette thèse il est considéré un exemple de semi-groupoide et un exemple de groupoide, tous les deux sont définis a partir de sous-graphes contraints du graphe de Cayley d'un groupe - le premier graphe est dirige alors que le second ne l'est pas. Pour ce premier exemple, on précise un résultat de Campanino et Petritis (ils ont montre que la marche aléatoire simple était transiente pour cet exemple de graphe dirigé) en déterminant la frontière de Martin associée à cette marche et établissant sa trivialité Dans le second exemple apparaissant dans ce manuscrit, on considère des pavages quasi-périodiques de l'espace euclidien obtenus à l'aide de la méthode de coupe et projection. Nous considérons la marche aléatoire simple le long des arêtes des polytopes constituant le pavage, et nous répondons a la question du type de celle-ci, c'est-à-dire nous déterminons si elle est récurrente ou transiente. Nous montrons ce résultat en établissant des inégalités isopérimétriques Cette stratégie permet d'obtenir des estimées de la vitesse de décroissance du noyau de la chaleur, ce que n'aurait pas permis l'utilisation d'un critère de type Nash-Williams.
64

Etude du comportement en temps long de processus de markov déterministes par morceaux / Study of a long time behavior of some piecewise deterministic Markov processes

Lagasquie, Gabriel 04 July 2018 (has links)
L’objectif de cette thèse est d’étudier le comportement en temps long de certains processus de Markov déterministes par morceaux (PDMP) dont le flot suivi par la composante spatiale commute aléatoirement entre plusieurs flots possédant un unique équilibre attractif (éventuellement le même pour chaque flot). Nous donnerons dans un premier temps un exemple d’étude d’un tel processus construit dans le plan à partir de flots associés à des équations différentielles linéaires stables où il est déjà possible d’observer des comportements contre-intuitifs. La deuxième partie de ce manuscrit est dédiée à l’étude et la comparaison de deux modèles de compétition pour une ressource dans un environnement hétérogène. Le premier modèle est un modèle alétoire simulant l’hétérogénéité temporelle d’un environnement sur les espèces en compétition à l’aide d’un PDMP. Son étude utilise des outils maintenant classiques sur l’étude des PDMP. Le deuxième modèle est un modèle déterministe (présentant sous forme d’un système d’équations différentielles) modélisant l’impact de l’hétérogénéité spatiale d’un environnement sur ces mêmes espèces. Nous verrons que malgré leur nature très différente, le comportement en temps long de ces deux systèmes est relativement similaire et est essentiellement déterminé par le signe des taux d’invasion de chacune des espèces qui sont des quantités dépendant exclusivement des paramètres du système et modélisant la vitesse de croissance (ou de décroissance) de ces espèces lorsqu’elles sont au bord de l’extinction. / The objective of this thesis is to study the long time behaviour of some piecewise deterministic Markov processes (PDMP). The flow followed by the spatial component of these processes switches randomly between several flow converging towards an equilibrium point (not necessarily the same for each flow). We will first give an example of such a process built in the plan from two linear stable differential equations and we will see that its stability depends strongly on the switching times. The second part of this thesis is dedicated to the study and comparison of two competition models in a heterogeneous environment. The first model is a probabilistic model where we build a PDMP simulating the effect of the temporal heterogeneity of an environment over the species in competition. Its study uses classical tools in this field. The second model is a deterministic model simulating the effect of the spatial heterogeneity of an environment over the same species. Despite the fact that the nature of the two models is very different, we will see that their long time behavior is very similar. We define for both model several quantities called invasion rates modelizing the growth (or decreasing) rate speed of a species when it is near to extinction and we will see that the signs of these invasion rates fully describes the long time behavior for both systems.
65

Stochastic models for resource allocation in large distributed systems / Modèles stochastiques pour l'allocation des ressources dans les grands systèmes distribués

Thompson, Guilherme 08 December 2017 (has links)
Cette thèse traite de quatre problèmes dans le contexte des grands systèmes distribués. Ce travail est motivé par les questions soulevées par l'expansion du Cloud Computing et des technologies associées. Le présent travail étudie l'efficacité de différents algorithmes d'allocation de ressources dans ce cadre. Les méthodes utilisées impliquent une analyse mathématique de plusieurs modèles stochastiques associés à ces réseaux. Le chapitre 1 fournit une introduction au sujet, ainsi qu'une présentation des principaux outils mathématiques utilisés dans les chapitres suivants. Le chapitre 2 présente un mécanisme de contrôle de congestion dans les services de Video on Demand fournissant des fichiers encodés dans diverses résolutions. On propose une politique selon laquelle le serveur ne livre la vidéo qu'à un débit minimal lorsque le taux d'occupation du serveur est supérieur à un certain seuil. La performance du système dans le cadre de cette politique est ensuite évaluée en fonction des taux de rejet et de dégradation. Les chapitres 3, 4 et 5 explorent les problèmes liés aux schémas de coopération entre centres de données (CD) situés à la périphérie du réseau. Dans le premier cas, on analyse une politique dans le contexte des services de cloud multi-ressources. Dans le second cas, les demandes arrivant à un CD encombré sont transmises à un CD voisin avec une probabilité donnée. Au troisième, les requêtes bloquées dans un CD sont transmises systématiquement à une autre où une politique de réservation (trunk) est introduite tel qu'une requête redirigée est acceptée seulement s'il y a un certain nombre minimum de serveurs libres dans ce CD. / This PhD thesis investigates four problems in the context of Large Distributed Systems. This work is motivated by the questions arising with the expansion of Cloud Computing and related technologies. The present work investigates the efficiency of different resource allocation algorithms in this framework. The methods used involve a mathematical analysis of several stochastic models associated to these networks. Chapter 1 provides an introduction to the subject in general, as well as a presentation of the main mathematical tools used throughout the subsequent chapters. Chapter 2 presents a congestion control mechanism in Video on Demand services delivering files encoded in various resolutions. We propose a policy under which the server delivers the video only at minimal bit rate when the occupancy rate of the server is above a certain threshold. The performance of the system under this policy is then evaluated based on both the rejection and degradation rates. Chapters 3, 4 and 5 explore problems related to cooperation schemes between data centres on the edge of the network. In the first setting, we analyse a policy in the context of multi-resource cloud services. In second case, requests that arrive at a congested data centre are forwarded to a neighbouring data centre with some given probability. In the third case, requests blocked at one data centre are forwarded systematically to another where a trunk reservation policy is introduced such that a redirected request is accepted only if there are a certain minimum number of free servers at this data centre.
66

Méthodes quantitatives pour l'étude asymptotique de processus de Markov homogènes et non-homogènes / Quantitative methods for the asymptotic study of homogeneous and non-homogeneous Markov processes

Delplancke, Claire 28 June 2017 (has links)
L'objet de cette thèse est l'étude de certaines propriétés analytiques et asymptotiques des processus de Markov, et de leurs applications à la méthode de Stein. Le point de vue considéré consiste à déployer des inégalités fonctionnelles pour majorer la distance entre lois de probabilité. La première partie porte sur l'étude asymptotique de processus de Markov inhomogènes en temps via des inégalités de type Poincaré, établies par l'analyse spectrale fine de l'opérateur de transition. On se place d'abord dans le cadre du théorème central limite, qui affirme que la somme renormalisée de variables aléatoires converge vers la mesure gaussienne, et l'étude est consacrée à l'obtention d'une borne à la Berry-Esseen permettant de quantifier cette convergence. La distance choisie est une quantité naturelle et encore non étudiée dans ce cadre, la distance du chi-2, complétant ainsi la littérature relative à d'autres distances (Kolmogorov, variation totale, Wasserstein). Toujours dans le contexte non-homogène, on s'intéresse ensuite à un processus peu mélangeant relié à un algorithme stochastique de recherche de médiane. Ce processus évolue par sauts de deux types (droite ou gauche), dont la taille et l'intensité dépendent du temps. Une majoration de la distance de Wasserstein d'ordre 1 entre la loi du processus et la mesure gaussienne est établie dans le cas où celle-ci est invariante sous la dynamique considérée, et étendue à des exemples où seule la normalité asymptotique est vérifiée. La seconde partie s'attache à l'étude des entrelacements entre processus de Markov (homogènes) et gradients, qu'on peut interpréter comme un raffinement du critère de Bakry-Emery, et leur application à la méthode de Stein, qui est un ensemble de techniques permettant de majorer la distance entre deux mesures de probabilité. On prouve l'existence de relations d'entrelacement du second ordre pour les processus de naissance-mort, allant ainsi plus loin que les relations du premier ordre connues. Ces relations sont mises à profit pour construire une méthode originale et universelle d'évaluation des facteurs de Stein relatifs aux mesures de probabilité discrètes, qui forment une composante essentielle de la méthode de Stein-Chen. / The object of this thesis is the study of some analytical and asymptotic properties of Markov processes, and their applications to Stein's method. The point of view consists in the development of functional inequalities in order to obtain upper-bounds on the distance between probability distributions. The first part is devoted to the asymptotic study of time-inhomogeneous Markov processes through Poincaré-like inequalities, established by precise estimates on the spectrum of the transition operator. The first investigation takes place within the framework of the Central Limit Theorem, which states the convergence of the renormalized sum of random variables towards the normal distribution. It results in the statement of a Berry-Esseen bound allowing to quantify this convergence with respect to the chi-2 distance, a natural quantity which had not been investigated in this setting. It therefore extends similar results relative to other distances (Kolmogorov, total variation, Wasserstein). Keeping with the non-homogeneous framework, we consider a weakly mixing process linked to a stochastic algorithm for median approximation. This process evolves by jumps of two sorts (to the right or to the left) with time-dependent size and intensity. An upper-bound on the Wasserstein distance of order 1 between the marginal distribution of the process and the normal distribution is provided when the latter is invariant under the dynamic, and extended to examples where only the asymptotic normality stands. The second part concerns intertwining relations between (homogeneous) Markov processes and gradients, which can be seen as refinment of the Bakry-Emery criterion, and their application to Stein's method, a collection of techniques to estimate the distance between two probability distributions. Second order intertwinings for birth-death processes are stated, going one step further than the existing first order relations. These relations are then exploited to construct an original and universal method of evaluation of discrete Stein's factors, a key component of Stein-Chen's method.
67

Contrôle optimal stochastique des processus de Markov déterministes par morceaux et application à l’optimisation de maintenance / Stochastic optimal control for piecewise deterministic Markov processes and application to maintenance optimization

Geeraert, Alizée 06 June 2017 (has links)
On s’intéresse au problème de contrôle impulsionnel à horizon infini avec facteur d’oubli pour les processus de Markov déterministes par morceaux (PDMP). Dans un premier temps, on modélise l’évolution d’un système opto-électronique par des PDMP. Afin d’optimiser la maintenance du système, on met en place un problème de contrôle impulsionnel tenant compte à la fois du coût de maintenance et du coût lié à l’indisponibilité du matériel auprès du client.On applique ensuite une méthode d’approximation numérique de la fonction valeur associée au problème, faisant intervenir la quantification de PDMP. On discute alors de l’influence des paramètres sur le résultat obtenu. Dans un second temps, on prolonge l’étude théorique du problème de contrôle impulsionnel en construisant de manière explicite une famille de stratégies є-optimales. Cette construction se base sur l’itération d’un opérateur dit de simple-saut-ou-intervention associé au PDMP, dont l’idée repose sur le procédé utilisé par U.S. Gugerli pour la construction de temps d’arrêt є-optimaux. Néanmoins, déterminer la meilleure position après chaque intervention complique significativement la construction de telles stratégies et nécessite l’introduction d’un nouvel opérateur. L’originalité de la construction de stratégies є-optimales présentée ici est d’être explicite, au sens où elle ne nécessite pas la résolution préalable de problèmes complexes. / We are interested in a discounted impulse control problem with infinite horizon forpiecewise deterministic Markov processes (PDMPs). In the first part, we model the evolutionof an optronic system by PDMPs. To optimize the maintenance of this equipment, we study animpulse control problem where both maintenance costs and the unavailability cost for the clientare considered. We next apply a numerical method for the approximation of the value function associated with the impulse control problem, which relies on quantization of PDMPs. The influence of the parameters on the numerical results is discussed. In the second part, we extendthe theoretical study of the impulse control problem by explicitly building a family of є-optimalstrategies. This approach is based on the iteration of a single-jump-or-intervention operator associatedto the PDMP and relies on the theory for optimal stopping of a piecewise-deterministic Markov process by U.S. Gugerli. In the present situation, the main difficulty consists in approximating the best position after the interventions, which is done by introducing a new operator.The originality of the proposed approach is the construction of є-optimal strategies that areexplicit, since they do not require preliminary resolutions of complex problems.
68

Etude dimensionnelle de la régularité de processus de diffusion à sauts / Dimension properties of the regularity of jump diffusion processes

Yang, Xiaochuan 01 July 2016 (has links)
Dans cette thèse, on étudie diverses propriétés dimensionnelles de la régularité de processus de difusions à sauts, solution d’une classe d’équations différentielles stochastiques à sauts. En particulier, on décrit la fluctuation de la régularité höldérienne de ces processus et celle de la dimension locale pour la mesure d’occupation qui leur est associée en calculant leur spectre multifractal. La dimension de Hausdorff de l’image et du graphe de ces processus ont aussi étudiées.Dans le dernier chapitre, on applique une nouvelle notion de dimension de grande échelle pour décrire l’asymptote à l’infini du temps de séjour d’un mouvement brownien en dimension 1 sous des frontières glissantes / In this dissertation, we study various dimension properties of the regularity of jump di usion processes, solution of a class of stochastic di erential equations with jumps. In particular, we de- scribe the uctuation of the Hölder regularity of these processes and that of the local dimensions of the associated occupation measure by computing their multifractal spepctra. e Hausdor dimension of the range and the graph of these processes are also calculated.In the last chapter, we use a new notion of “large scale” dimension in order to describe the asymptotics of the sojourn set of a Brownian motion under moving boundaries
69

Mobile data and computation offloading in mobile cloud computing

Liu, Dongqing 07 1900 (has links)
No description available.
70

Limite hydrodynamique pour un dynamique sur réseau de particules actives / Hydrodynamic limit for an active stochastic lattice gas

Erignoux, Clément 04 May 2016 (has links)
L'étude des dynamiques collectives, observables chez de nombreuses espèces animales, a motivé dans les dernières décennies un champ de recherche actif et transdisciplinaire. De tels comportements sont souvent modélisés par de la matière active, c'est-à-dire par des modèles dans lesquels chaque individu est caractérisé par une vitesse propre qui tend à s'aligner avec celle de ses voisins.Dans un modèle fondateur proposé par Vicsek et al., ainsi que dans de nombreux modèles de matière active liés à ce dernier, une transition de phase entre un comportement chaotique à forte température, et un comportement global et cohérent à faible température, a été observée. De nombreuses preuves numériques de telles transitions de phase ont été obtenues dans le cadre des dynamiques collectives. D'un point de vue mathématique, toutefois, ces systèmes actifs sont encore mal compris. Plusieurs résultats ont été obtenus récemment sous une approximation de champ moyen, mais il n'y a encore à ce jour que peu d'études mathématiques de modèles actifs faisant intervenir des interactions purement microscopiques.Dans ce manuscrit, nous décrivons un système de particules actives sur réseau interagissant localement pour aligner leurs vitesses. L'objet de cette thèse est l'obtention rigoureuse, à l'aide du formalisme des limites hydrodynamiques pour les gaz sur réseau, de la limite macroscopique de ce système hors-équilibre, qui pose de nombreuses difficultés techniques et théoriques. / Collective dynamics can be observed among many animal species, and have given rise in the last decades to an active and interdisciplinary field of study. Such behaviors are usually modeled by active matter, in which each individual is self-driven and tends to align its velocity with that of its neighbors.In a classical model introduced by Vicsek & al., as well as in numerous related active matter models, a phase transition between chaotic behavior at high temperature and global order at low temperature can be observed. Even though ample evidence of these phase transitions has been obtained for collective dynamics, from a mathematical standpoint, such active systems are not fully understood yet. Some progress has been achieved in the recent years under an assumption of mean-field interactions, however to this day, few rigorous results have been obtained for models involving purely local interactions.In this manuscript, we describe a lattice active particle system interacting locally to align their velocities. This thesis aims at rigorously obtaining, using the formalism developed for hydrodynamic limits of lattice gases, the scaling limit of this out-of-equilibrium system, for which numerous technical and theoretical difficulties arise.

Page generated in 0.0301 seconds