• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 31
  • 7
  • 4
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 59
  • 59
  • 16
  • 14
  • 13
  • 12
  • 10
  • 8
  • 8
  • 8
  • 8
  • 8
  • 7
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Lanthanide ion binding proteins as in vivo luminescent labels

White, Gaye Francine January 2002 (has links)
No description available.
2

Regulatory mechanisms and biological implications of protein complex assembly

Wells, Jonathan Nicholas January 2018 (has links)
Every living organism possesses a genome that contains within it a unique set of genes, a substantial number of which encode proteins. Over the last 20 years, it has become apparent that organismal complexity arises not from the specific complement of genes per se, but rather from interactions between the gene products - in particular, interactions between proteins. As an inevitable consequence of the crowded cellular interior, most protein-protein interactions are fleeting. However, many are significantly more long-lived and result in stable protein complexes, in which the constituent subunits are obligately dependent on their binding partners. Despite the abundance of protein complexes and their critical importance to the cell, we currently have an incomplete understanding of the mechanisms by which the cell ensures their correct assembly. In the chapters that follow, I have attempted to improve our understanding of the regulatory systems underlying assembly of protein complexes, and the way in which assembly as a whole affects the behaviour of the cell. The thesis opens with an extended literature review covering the currently available methods for characterising protein complexes. After this introduction, chapters 2-4 are concerned with regulatory mechanisms and biological implications common to the assembly of all protein complexes. Chapter 5 diverges from this work, and describes a family of evolutionarily related proteins that regulate the behaviour of condensins and cohesins. Bacterial and archaeal genomes contain far less non-coding DNA than eukaryotes, and coding genes are often packaged into discrete units known as operons. The proteins encoded within operons are usually functionally related, either through participation in metabolic pathways or as subunits of heteromeric protein complexes. Since protein complexes assemble via ordered pathways, we reasoned that there might be a signature of assembly order present in operons, the genes of which are translated in sequential order. By comparing computationally predicted assembly pathways with gene order in operons, we demonstrated this to be the case for the large majority of operon-encoded complexes. Within operons, gene order follows assembly order, and adjacent genes are substantially more likely to share a physical interface than those further apart. This work demonstrates that efficient assembly of complexes is of sufficient importance as to have placed major constraints on the evolution of operon gene order. Following this study of bacterial operons, I present results from research investigating how patterns of protein degradation in eukaryotes are influenced by the formation of protein complexes. This showed that, whilst most proteins display exponential degradation kinetics, a sizeable minority deviate considerably from this pattern, instead being more consistent with a two-step degradation process. These proteins are predominantly members of heteromeric complexes, and their two-step decay profiles can be explained using a model under which bound and unbound subunits are degraded at different rates. Within individual complexes, we find that non-exponentially decaying proteins tend to form larger interfaces, assemble earlier, and show a higher degree of coexpression, consistent with the idea that bound subunits are degraded at a slower rate than unbound or peripheral subunits. This model also explains the behaviour of proteins in aneuploid cells where one or more chromosomes have been duplicated. In general, protein abundance scales with gene copy number, so that the immediate effect of duplicating a chromosome is to double the abundance of the proteins encoded on it. However, previous analyses of mass spectrometry data, as well as my own, have shown that the abundance of many proteins on duplicated chromosomes is significantly attenuated compared to what one would expect. These proteins, like those with non-exponential degradation patterns, are very often members of larger complexes. Since the overall concentration of a protein complex is constrained by that of its least abundant members, duplicating a single subunit will predominantly increase the unbound, unstable fraction of that subunit. The results from this work strongly suggest that the apparent attenuation of many proteins observed in aneuploid cells is indeed a consequence of the failure of these proteins to assemble into complexes. Finally, I present a study concerning an important, universally conserved family of protein complexes, namely the SMC-kleisins. Two members of this family, condensin and cohesin, are responsible for two hallmarks of eukaryotic chromatin organisation: the formation of condensed, linear chromosomes, and sister chromatid cohesion during cell division. Unlike other SMC-kleisins, condensin and cohesin possess a number of regulators containing HEAT repeats. By developing a computational pipeline for searching and clustering paralogous repeat proteins, I was able to demonstrate that these regulators form a distinct sub-family within the larger class of HEAT repeat proteins. Furthermore, these regulators arose very early in eukaryotic history, hinting at a possible role in the origin of modern condensins and cohesins.
3

Strukturní NMR studie proteinových komplexů / Structural NMR studies of protein complexes

Hexnerová, Rozálie January 2019 (has links)
Protein-protein interactions are involved in various biological processes and detailed characterization of their structural basis by the means of structural biology is often instrumental for rigorous understanding of underlying molecular mechanisms. This information is important not only for fundamental biology but also plays an important role in search for sites amenable for therapeutic intervention. Nuclear magnetic resonance spectroscopy is alongside X-ray crystallography and single-particle cryo-electron microscopy one of the key high-resolution techniques in structural biology. Although its applicability to larger systems has a well-known physical limit, it offers unique capabilities in addressing highly dynamic or inherently heterogeneous systems. In this doctoral thesis, the solution-based NMR approach was used for detailed structural characterization of selected biologically important proteins and their complexes that provided important insights into their biological roles. In three distinct projects, I (i) studied the relationship between the structural effects of particular modifications in the insulin-like growth factor II (IGF-II) and their selectivity to the insulin axis receptors; (ii) the specific binding mechanism of the SH3 domain from the Crk-associated substrate (CAS); (iii) and...
4

Use of Bionanotechnology to Decipher the Patterns of Assemblage and Interaction of Multi-Protein Complexes

Diaz, Manisha Regina 05 October 2009 (has links)
No description available.
5

Proteomic analysis of protein complexes and cell cycle regulation in Trypanosoma brucei

Crozier, Thomas William Monteiro January 2016 (has links)
<i>Trypanosoma brucei</i> is a unicellular trypanosomatid protozoan parasite and the etiological agent of sleeping sickness in sub-Saharan Africa. The trypanosomatid order also includes the parasites <i>Trypanosoma cruzi </i>(Chagas disease) and <i>Leishmania major</i> (Leishmaniasis). Sleeping sickness is estimated to cause ~10,000 deaths per year and current treatments are expensive, difficult to administer and toxic. Although genomic sequencing of all three parasites has identified the coding sequences of these organisms, much is still unknown about protein function, with 64% of identified genes annotated as “hypothetical”, lacking obvious homology with proteins of known function. To further understand the unusual biology of this family of eukaryotes, this thesis aimed to provide evidence for protein function in <i>Trypanosoma brucei</i> in a high-throughput manner, utilising global proteomic analyses. This work has encompassed two main approaches: The global analysis of protein interactions and the analysis of proteome changes across the cell-cycle. To enable these approaches, I developed protocols for proteome wide analysis of protein complexes in <i>Trypanosoma brucei</i>, combining multiple forms of chromatography on ‘native’ lysates of cells to produce a proteome wide map of core, soluble protein complexes in this organism. I further performed preliminary studies to optimise in vivo formaldehyde crosslinking in <i>T. brucei</i> in order to characterise membrane bound protein complexes. I also developed methodologies to produce large populations of procyclic <i>T. brucei</i> cells highly enriched in different phases of the cell-cycle for proteomic analysis. In conjunction with the optimisation of methods for isobaric tag quantitation on Fusion mass spectrometers, I provide the first characterisation of protein regulation during cell division in <i>T. brucei</i> at an unparalleled proteomic depth. Together, these datasets provide a wealth of information about the interaction and cell cycle regulation of many thousands of proteins in <i>T. brucei</i>, and contributes greatly to the understanding of protein function in trypanosomatid organisms. I highlight the ability of these methods to predict novel protein complexes, predict interactions between “hypothetical” proteins with proteins of known function, and to identify “hypothetical” cell-cycle regulated proteins that are essential for growth of the parasite, that are a potentially interesting source for novel drug targets. Data visualisation tools to browse the data in a user-friendly format will further allow the trypanosmatid research community to mine these datasets to understand function of proteins of interest and continue to extract functional information from these datasets to extend our understanding of trypanosomatid biology.
6

DNA-Mediated Detection and Profiling of Protein Complexes

Hammond, Maria January 2013 (has links)
Proteins are the effector molecules of life. They are encoded in DNA that is inherited from generation to generation, but most cellular functions are executed by proteins. Proteins rarely act on their own – most actions are carried out through an interplay of tens of proteins and other biomolecules. Here I describe how synthetic DNA can be used to study proteins and protein complexes. Variants of proximity ligation assays (PLA) are used to generate DNA reporter molecules upon proximal binding by pairs of DNA oligonucleotide-modified affinity reagents. In Paper I, a robust protocol was set up for PLA on paramagnetic microparticles, and we demonstrated that this solid phase PLA had superior performance for detecting nine candidate cancer biomarkers compared to other immunoassays. Based on the protocol described in Paper I I then developed further variants of PLA that allows detection of protein aggregates and protein interactions. I sensitively detected aggregated amyloid protofibrils of prion proteins in paper II, and in paper III I studied binary interactions between several proteins of the NFκB family. For all immunoassays the selection of high quality affinity binders represents a major challenge. I have therefore established a protocol where a large set of protein binders can be simultaneously validated to identify optimal pairs for dual recognition immunoassays (Paper IV).
7

An investigation into the structural role of the CCR4-NOT complex in mRNA stability

Brazier, Hannah January 2017 (has links)
The CCR4-NOT complex is a global regulator of gene expression which controls mRNA levels by removing the poly-(A) tail, a step known as deadenylation and one that constitutes the rate-limiting step in mRNA decay. The human complex is comprised of eight stably associated CNOT subunits where CNOT1 forms the scaffold onto which CNOT2-11 bind. Although much has been learnt about the CCR4-NOT complex, questions still remain. Thus, this study focused on a number of sub-complexes of CNOT subunits and associated proteins to determine the mode of interaction with a hope to explore the mechanism of deadenylation by the CCR4-NOT complex. Firstly, the complex of CNOT10:CNOT11, found only in higher eukaryotes, was reconstituted for the first time using recombinant proteins. Crystallisation trials, limited proteolysis and mass spectrometry were used to isolate novel interaction regions between CNOT10 and CNOT11 which may provide direction for future structural and functional studies. Secondly, the interaction between CNOT9 and TTP was characterised. TTP is a RNA-binding protein which targets inflammatory mRNAs for deadenylation by recruiting the CCR4-NOT complex. This study highlights novel interactions between TTP and both CNOT2 and CNOT9. Moreover, BioLayer interferometry (BLI), peptide arrays and site-directed mutagenesis identified that TTP interacts with CNOT9 in a tryptophan-mediated manner. These findings change the known interface between TTP and the CCR4-NOT complex. Lastly, the MultiBac system was used to reconstitute a number of human CNOT sub-complexes, one of which was shown to effectively degrade a poly-(A) substrate, demonstrating it is enzymatically active. This achievement provides a tool for the future study of the CCR4-NOT complex. In summary, this study highlights novel interactions and characterises previously unknown binding mechanisms between CCR4-NOT subunits which expands our current understanding of the complex.
8

Observations On Phosvitin-Protein Interactions : Implications Of Their Biological Significance

Lakhey, Hitendra V 09 1900 (has links) (PDF)
No description available.
9

Nuclear Magnetic Resonance Spectroscopy in the Study of Protein Complexes

Bilinovich, Stephanie M. 16 May 2014 (has links)
No description available.
10

Native mass spectrometry protein structural characterization via surface induced dissociation: instrumentation and applications

Yan, Jing 12 December 2017 (has links)
No description available.

Page generated in 0.0568 seconds