• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 117
  • 33
  • 8
  • 6
  • 5
  • 4
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 235
  • 235
  • 38
  • 38
  • 33
  • 31
  • 29
  • 29
  • 28
  • 24
  • 16
  • 15
  • 15
  • 14
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Neurotrophic factors : production and purification of neurotrophic factor receptors using a baculovirus expression system

Ashcroft, Margaret January 1995 (has links)
No description available.
12

The role of transforming growth factor-beta superfamily members in osteochondrogenesis

Parry, Ailsa M. January 1999 (has links)
No description available.
13

Cloning of the functional domains of TSP-1 for protein expression

Zangi, Shadi January 2009 (has links)
<p>Thrombospondin-1 (TSP-1) is a multifunctional extracellular matrix glycoprotein that is released from platelets α-granule to regulate angiogenesis process. TSP-1 is well-known as an inhibitory factor of angiogenesis that binds to angiogenesis stimulating factors, for example fibroblast growth factor 2 (FGF-2), vascular endothelial growth factor (VEGF) and hepatocyte growth factor/scatter factor (HGF/SF), to inhibit angiogenesis. We have cloned TSP-1 domains separately to allow studying of their function and effect on proliferation of human umbilical vein endothelial cells (HUVECs). We used an <em>Escherichia coli</em> expressionsvektor including poly histidin-tags and lac-promoter for induction of the seven successfully cloned domains by IPTG and arabinose. Our result shows that we have very low expression and induction of our protein in the <em>E.coli</em> by IPTG and arabinose, which is most likely due to complications associated with expressing a human protein in a prokaryotic system.</p>
14

Cloning of the functional domains of TSP-1 for protein expression

Zangi, Shadi January 2009 (has links)
Thrombospondin-1 (TSP-1) is a multifunctional extracellular matrix glycoprotein that is released from platelets α-granule to regulate angiogenesis process. TSP-1 is well-known as an inhibitory factor of angiogenesis that binds to angiogenesis stimulating factors, for example fibroblast growth factor 2 (FGF-2), vascular endothelial growth factor (VEGF) and hepatocyte growth factor/scatter factor (HGF/SF), to inhibit angiogenesis. We have cloned TSP-1 domains separately to allow studying of their function and effect on proliferation of human umbilical vein endothelial cells (HUVECs). We used an Escherichia coli expressionsvektor including poly histidin-tags and lac-promoter for induction of the seven successfully cloned domains by IPTG and arabinose. Our result shows that we have very low expression and induction of our protein in the E.coli by IPTG and arabinose, which is most likely due to complications associated with expressing a human protein in a prokaryotic system.
15

Toxic effects of polybrominated diphenyl ethers (PBDEs) on survival rate and proteomics expression of Monopylephorus limosus

Lin, Chwen-ru 17 August 2005 (has links)
The current knowledge concerning effects of polybrominated diphenyl ether (PBDEs) on benthic aquatic organisms is still very limited although they have been widely used as fire retardant additives for 3 decades. This study was conducted to evaluate the toxic effects of BDE-47 and BDE-183, the two common congeners of PBDEs in river sediments, on a benthic oligochaete worms, Monopylephorus limosus. The worms were exposed to BDE-47 or to BDE-183 for two or eight weeks. The survival rates of M. limosus decreased significantly when exposed to 700 ng/g dry soil of BDE-47 or BDE-183 for 8 weeks, but not in groups of 1-1000 ng/g BDE-47 for 2 weeks. A total of forty proteins of M. limosus has been expressed and determined by the two-dimensional gel electrophoresis (2-DE). Through the cluster analysis, it was found that the protein expression in the group of 100 ng/g BDE-47 was similar to 10 ng/g BDE-183. The results indicate that the toxicity of BDE-183 was greater than BDE-47 to M.limosus. Although the survival rate of M. limosus was not significantly affected when exposed to BDE-47 or BDE-183 at concentrations of 1 to 100 ng/g, significant differences in protein expression were found. Thus, the analysis of protein expression is more sensitive to detect the toxicological change in M. limosus than the survival test.
16

Protein expression of low temperature-inducible gene in Tilapia, Oreochromis mossambicus

Huang, Sheng-hui 05 September 2006 (has links)
In tilapia , sex determination is controled by genetic and triggered by the environmental factors. Expressed sequence tags ( EST ) derived from the developing tilapia brain is cloned in our lab. The cDNA full length of the gene, F10A83 was cloned. In the present study, F10A83 is a gene with 1526 bp of cDNA sequence, and deduced 176 amino acids of protein sequence. F10A83 was overexpressed as a GFP fusion protein in mouse neuroblastoma Neuro-2a cells. F10A83 is abundantly distributed in the nucleus of Neuro-2a cell. The protein of F10A83 was expressed in the prokaryotic cell (BL21) and eukaryotic cell (neuro-2a), and purified using a simple purification process, inducing, isolation, and Ni-NTA affinity chromatography. The protein of F10A83 in both E. coli system and neuro-2a cell line expression has been established.
17

Cloning and Expression of Streptococcal Recombinant Protein G.

Dwivedi, Gaurav Dutta January 2015 (has links)
Recombinant Protein G (rPG), an engineered form of streptococcal protein G with a theoretical molecular weight of 22.26 kDa was successfully cloned and expressed in E.coli BL 21(DE3) cells. The albumin binding domain was removed during the gene synthesis to avoid unspecific binding. This recombinant form of protein G contains only the IgG binding domains along with the 6X histidine tag at the N terminal. The removal of non-specific domains maximizes the specificity of IgG binding through the Fc region. The recombinant protein G was purified through heat treatment and using immobilized metal affinity chromatography (IMAC). On an SDS-PAGE gel there was only a single band of the purified preparation which migrated at 32 KDa, however when analyzed by mass spectrometry it was ~22.4 kDa, this phenomenon of retarded migration on SDS-PAGE has been known from previous studies. The production of recombinant protein has also been optimized. The effects of expression temperature, inducer type, inducer concentration and media composition have been investigated. The expression was done at 10 liter scale using the best expression conditions, and the protein was purified to homogeneity, dialyzed and lyophilized. The pure protein was immobilized on a POROS AL (Self Pack® POROS® 20 AL, Applied Biosystems, USA). The immobilized protein IgG binding has been monitored using a VersAFlo system. This system allowed real time monitoring of IgG binding characteristics. / <p></p><p> </p>
18

Έκφραση, απομόνωση και NMR χαρακτηρισμός ενός τροποποιημένου RING τομέα, με πρωτότυπο μοτίβο δέσμευσης ψευδαργύρου, του τύπου Cys4-His-Cys3

Τσαπαρδώνη, Σταματίνα 16 May 2014 (has links)
Η αποικοδόμηση των ενδοκυτταρικών πρωτεϊνών μέσω του μονοπατιού ουβικιτίνης-πρωτεοσώματος αποτελεί βασική διαδικασία που εξυπηρετεί σημαντικές ομοιοστατικές λειτουργίες του κυττάρου. Η ουβικιτίνη δεσμεύεται ομοιοπολικά στις πρωτεΐνες-στόχους μέσω ενός καταρράκτη ενζυμικών αντιδράσεων, στον οποίο καθοριστικό ρόλο παίζουν τα Ε3 ένζυμα, οι Ε3 λιγάσες ουβικιτίνης. Η πρωτεΐνη Arkadia είναι μια Ε3 λιγάση με έναν χαρακτηριστικό RING τομέα 69 αμινοξικών καταλοίπων στο C-τελικό άκρο της, μέσω του οποίου ασκεί την δράση της. Εμπλέκεται στο TGF-β σηματοδοτικό μονοπάτι το οποίο ρυθμίζει θετικά, ουβικιτινιλιώνοντας και στοχεύοντας για αποικοδόμηση πρωτεΐνες που αποτελούν αρνητικούς ρυθμιστές του. Κύριο χαρακτηριστικό του RING τομέα της Arkadia, ο οποίος έχει μελετηθεί και χαρακτηριστεί δομικά μέσω πολυπυρηνικής και πολυδιάστατης NMR φασματοσκοπίας, είναι η δέσμευση δύο ιόντων Zn2+ με χαρακτηριστικό διασταυρώμενο τρόπο (cross brace). Γνωρίζοντας τον πολύ σημαντικό ρόλο του Zn στην δομή και κατ’επέκταση στην δραστικότητα των RING τομέων, πραγματοποιήθηκαν μεταλλάξεις σε δύο αμινοξέα που συμμετέχουν στα μοτίβα δέσμευσης των δύο ιόντων Zn2+, οι H962C και H965C. Το μετάλλαγμα της H962C, στο οποίο εστιάζει η παρούσα εργασία, παρήχθη με βάση τις κλασσικές τεχνικές κλωνοποίησης DNA. Κατάλληλα δείγματα πρωτεΐνης εμπλουτισμένα σε πυρήνες ενεργούς στην φασματοσκοπία NMR, 15N και 13C, προετοιμάστηκαν ώστε να διεξαχθούν τα απαραίτητα πειράματα για τον προσδιορισμό της δομής. Το σύνολο των NMR φασμάτων απέδειξε ότι πρόκειται για ένα καλά δομημένο και σταθερό πολυπεπτίδιο. Τα δεδομένα από τις μετρήσεις ατομικής απορρόφησης και την επεξεργασία των φασμάτων επιβεβαίωσαν την διατήρηση της δέσμευσης δύο ιόντων Zn2+ ανά πολυπεπτίδιο, όπως στον RING τομέα του φυσικού τύπου της Arkadia. Ταυτόχρονα, πραγματοποιούνται περαιτέρω NMR μελέτες και αναλύσεις των φασμάτων με χρήση των κατάλληλων υπολογιστικών προγραμμάτων για την διερεύνηση της δομής και ικανότητας αλληλεπίδρασης με το Ε2 ένζυμο. / The degradation of the intracellular proteins through the ubiquitin-proteasome pathway is a crucial procedure that serves the cellular homeostasis. Ubiquitin is covalently attached to the target proteins through an enzymatic cascade, in which the E3 enzymes (E3 ubiquitin ligases) play a determinant role. Arkadia is an E3 ubiquitin ligase containing a characteristic RING domain in its C-terminus, comprised of 69 amino acids, which is responsible for its function. It is involved in TFG-β signaling pathway, where it ubiquitinates and subsequently leads negative regulators to proteasomal degradation. The most important characteristic of Arkadia’s RING domain, which has been studied and structurally characterized through multinuclear and multidimensional NMR spectroscopy, is that it bounds to zinc ions in a cross-brace manner. As the role of the zinc binding is critical for the structure and subsequently the activity of RING domains, His962 and His965, which participate in the zinc binding motifs, were mutated to cysteines. The Arkadia H962C mutant, on which the present work is focused, was produced through the classical techniques of DNA cloning. Protein samples were uniformly labeled in 15N and 13C nuclei in order for all the necessary NMR experiments to be carried out. The total of the NMR spectra demonstrated that Arkadia RING mutant H962C is a well structured and stable polypeptide. Furthermore, the information that came from the atomic absorption data and the analysis of the NMR spectra confirmed that the RING mutant maintains the RING wild type ability to bind two zinc ions. At the same time, further NMR studies are being carried out in order to investigate its structure and ability to interact with the E2 enzyme.
19

Recombinant human collagens:characterization of type II collagen expressed in insect cells and production of types I-III collagen in the yeast <em>Pichia pastoris</em>

Nokelainen, M. (Minna) 22 August 2000 (has links)
Abstract An efficient system for expressing recombinant human collagens is expected to have numerous scientific and medical applications, but this is difficult to achieve because most systems do not have sufficient levels of activity of prolyl 4-hydroxylase, the key enzyme of collagen synthesis. A recombinant form of human type II collagen, the main structural component of cartilage, was produced here in insect cells by coinfecting them with two baculoviruses, one coding for the proα chains of human type II procollagen, and the other for both the α and β subunits of human prolyl 4-hydroxylase. The amino acid composition of the recombinant form was very similar to that of the non-recombinant protein, with the exception that the hydroxylysine content was very low. The highest expression levels obtained in suspension cultures were 50 mg/l. An additional baculovirus coding for human lysyl hydroxylase was used to express type II collagen with a high hydroxylysine content. Marked differences in the rate of fibril formation in vitro and the morphology of the resulting fibrils were found between the recombinant type II collagens having 2 and 19 hydroxylysine residues/1000 amino acids, the maximal turbidity of the former being reached within 5 min, whereas the absorbance of the latter increased up to about 10 h. In addition, the latter collagen formed thin fibrils, whereas the former produced thick fibrils on a background of thin ones. The data indicate that regulation of the extent of lysine hydroxylation, and consequently of the amounts of hydroxylysine-linked carbohydrate units, may have major effects on collagen fibril formation. In order to study the expression of recombinant human collagens in yeasts, cDNAs for the proα chains of procollagens of type I, II and III were transformed into a recombinant P. pastoris strain expressing human prolyl 4-hydroxylase subunits. All the P. pastoris strains obtained produced full-length proα chains. Cells coexpressing the proα1(I) chains and prolyl 4-hydroxylase produced homotrimeric type I procollagen molecules, whereas cells coexpressing the proα1(I) and proα2(I) chains and prolyl 4-hydroxylase produced heterotrimeric molecules with the correct 2:1 chain ratio. pCα1(I) and pCα2(I) chains lacking the N propeptides assembled into pCcollagen molecules and yielded correctly folded and fully hydroxylated collagen molecules upon pepsinization. The Tm values of recombinant type I-III collagens produced in shaker flasks were about 38°C and the degree of hydroxylation of proline residues was lower than that in the corresponding non-recombinant collagens. When the recombinant collagens were produced in a 2-litre fermentor equipped with an O2 supply system, the expression levels increased markedly to 0.2–0.6 g/l. In addition, all these collagens were identical in 4-hydroxyproline content to the corresponding non-recombinant proteins, and all of them formed native-type fibrils.
20

Differential expression profiling of proteomes of pathogenic and commensal strains of Staphylococcus aureus using SILAC

Manickam, Manisha 16 January 2012 (has links)
Staphylococcus aureus (S. aureus) is the etiological agent of food-borne diseases, skin infections in humans and mastitis in bovines. S. aureus is also known to exist as a commensal on skin, nose and other mucosal surfaces of the host. This symbiotic association is a result of immune dampening or tolerance induced in the host by this pathogen. We proposed the variation in protein expression by commensal and pathogenic strain as an important factor behind the difference in pathogenicity. The identification of differentially expressed proteins was carried out using a quantitative mass spectrometry (MS)-based proteomic approach, known as stable isotope labeling of amino acids in cell culture (SILAC). Four commensal and pathogenic strains each were grown in the SILAC minimal media (RPMI 1640), containing light (12C) and heavy (13C) form of lysine, respectively, until early stationary growth phase. Various protein fractions, including cell wall, membrane and secreted, were extracted from the bacterial cultures and mixed in a 1:1 ratio. The relative abundance of proteins present in light and heavy labeled samples was determined using MS analysis. From a total of 151 differentially expressed proteins, 58 were found to be upregulated in the pathogenic strains. These proteins are involved in a variety of cellular functions, including immune modulation, iron-binding, cellular transport, redox reactions, and metabolic enzymes. The differentially expressed proteins can serve as putative candidates to improve current approach towards development of a vaccine against S. aureus. / Master of Science

Page generated in 0.0688 seconds