• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Real Time Gas Monitoring and Modeling on the Pyrolysis Process of Biomass

Smith, Lee Miller 12 1900 (has links)
In order to better understand the changes occurring in the internal environment of the pyrolysis process a method of monitoring the internal environment in real time is the key objective of this study. To accomplish this objective four tasks were laid out in order to develop an effective way of monitoring the changes in gases present as pyrolysis is occurring as well as in material activation processing. For all processing the self-activation process was used which combines pyrolysis and thermal activation into a single step process. In the first task 10 hard wood species were activated and the resulting properties were compared to see the impact of wood species on the resulting carbon structures. In order to understand the impact of gas concentration on the resulting carbons the second task developed a gas sensor array which effectiveness was corroborated using GC-MS and then comparisons of the changes in the resulting were made. For the third task the gas sensor array was used to analyze the production of CO2 gas and a triple Gaussian model was developed to model the changes in gas production throughout processing. H2 gas production was modeled in the fourth task using the same Gaussian model as the third, where the results of both gas productions were compared showing the impact of processing parameters on gas production. With these four tasks completed we can see how our processing effects wood species similarly but at different rates, gas concentration was linked to changes in carbon structure, the effectiveness of our sensor was proven, a triple Gaussian model was developed to around gas production, and the impact of processing parameters on gas production was observed. With this Information a link between resulting carbon structure and gas content of the pyrolysis can be done and the changes in the pyrolysis environment were monitored in real time.

Page generated in 0.082 seconds