Spelling suggestions: "subject:"pryruvate decarboxylase"" "subject:"pryruvate decarboxylases""
11 |
Biochemical And Genetic Studies On The Pyruvate Branch Point Enzymes Of Rhizopus OryzaeAcar, Seyda 01 January 2004 (has links) (PDF)
Rhizopus oryzae is a filamentous fungi which produces lactic acid and ethanol in fermentations. R. oryzae has numerous advantages for use industrial production of L-(+)-lactic acid but the yield of lactic acid produced on the basis of carbon consumed is low.
Metabolic flux analysis of R. oryzae has shown that most of the pyruvate produced at the end of the glycolysis is channelled to ethanol, acetyl-CoA and oxaloacetate production. This study aimed to answer some questions addressed on the regulation of pyruvate branch point in R. oryzae and for this purpose biochemical characterisation of the enzymes acting at this branch point and cloning the genes coding for these enzymes have been done.
Pyruvate decarboxylase was purified and characterised for the first time from R. oryzae. The purified enzyme has a Hill coefficient of 1.84 and the Km of the
enzyme is 8.6 mM for pyruvate at pH 6.5. The enzyme is inhibited at pyruvate
concentrations higher than 30 mM. The optimum pH for enzyme activity shows a broad range from 5.7 and 7.2. The monomer molecular weight was estimated as 59± / 2 kDa by SDS-PAGE analysis.
Pyruvate decarboxylase (pdcA and pdcB) and lactate dehydrogenase (ldhA and ldhB) genes of R. oryzae have been cloned by PCR-cloning approach and the filamentous fungi Aspergillus niger was transformed with these genes. The A. niger transformed with either of the ldh genes of R. oryzae showed enhanced production of lactic acid compared to wild type. Citric acid production was also increased in these transformants while no gluconate production was observed
Cloning of hexokinase gene from R. oryzae using degenerate primers was studied by the use of GenomeWalker kit (Clontech). The results of this study were evaluated by using some bioinformatics tools depending on the unassembled clone sequences of R. oryzae genome.
|
12 |
Phytomonas serpens: caracterização da piruvato/indolpiruvato descarboxilase e funcionalidade da auxina produzida. / Phytomonas serpens: characterization of the pyruvate/indolepyruvate decarboxylase and functionality of the auxin produced.Susan Ienne da Silva Vançan 22 May 2012 (has links)
Um gene que codifica uma piruvato/indolpiruvato descarboxilase (PDC/IPDC) está presente no tripanossomatídeo de plantas Phytomonas serpens. A PDC atua na fermentação alcoólica, enquanto que a IPDC atua na biossíntese do fitormônio ácido indol-3-acético (AIA). Análises filogenéticas indicam que a PDC/IPDC de P. serpens é monofilética com IPDCs de gama-proteobactérias, sugerindo um evento de transferência horizontal gênica. A análise de meios de cultura de P. serpens confirma a produção de etanol e AIA. A funcionalidade do fitormônio foi confirmada em ensaios de alongamento de hipocótilos de tomateiros. Tomates inoculados com P. serpens mostraram aumento no teor de AIA-amida e -éster conjugados. A atividade PDC foi mostrada em extratos de P. serpens. Concluímos que a PDC/IPDC seria uma 2-cetoácido descaboxilase com atividade catalítica variável para diferentes substratos. A atividade PDC parece ser predominante em P. serpens, representando um mecanismo para oxidar parte do NADH formado na glicólise, principal responsável pela produção de ATP neste organismo. / A gene codifying a pyruvate/indolepyruvate decarboxylase (PDC/IPDC) is present in the plant trypanosomatid Phytomonas serpens. PDC acts in the alcoholic fermentation, whyle IPDC acts in the biosynthesis of the phytohormone indole-3-acetic acid (IAA). Phylogenetic analysis indicate that P. serpens PDC/IPDC is monophyletic with gamma-proteobacteria IPDCs, suggesting a horizontal gene transfer event. Analysis of P. serpens culture media confirms production of ethanol and IAA. The functionality of the phytohormone was confirmed by tomato hypocotyl elongation tests. Tomatoes inoculated with P. serpens showed an increase in the concentration of IAA amide and ester conjugated. PDC activity was shown in P. serpens extracts. We conclude that the PDC/IPDC would be a 2-keto acid decaboxylase with variable catalytic activity for different substrates. The PDC activity appears to be prevalent in P. serpens representing a mechanism to oxidize part of NADH formed in glycolysis, responsible for ATP production in this organism.
|
Page generated in 0.0665 seconds