361 |
Exploring metabolic and genetic diversity in tomato secondary metabolitesDzakovich, Michael Paul January 2020 (has links)
No description available.
|
362 |
Studies in the Management of Pythium Seed and Root Rot of Soybean: Efficacy of Fungicide Seed Treatments, Screening Germplasm for Resistance, and Comparison of Quantitative Disease Resistance Loci to Three Species of <i>Pythium and Phytophthora sojae</I>Scott, Kelsey L. 15 August 2018 (has links)
No description available.
|
363 |
Molecular marker analysis of adult plant resistance to powdery mildew in common wheatLiu, Sixin 05 January 2000 (has links)
Powdery mildew, caused by Blumeria graminis (DC.) E.O. Speer f. sp. tritici E'm. Marchal (syn. Erysiphe graminis f. sp. tritici), is one of the major diseases of wheat (Triticum aestivum L.) worldwide. The use of cultivars with resistance to powdery mildew is an efficient, economical and environmentally safe way to control powdery mildew. Race-specific resistance has been extensively used in breeding programs; however, it is ephemeral. Adult plant resistance (APR) to powdery mildew is more durable as demonstrated by the cultivar Massey, which has maintained its APR to powdery mildew since its release in 1981. To develop an efficient breeding strategy, it is essential to understand the genetic basis of APR. The objectives of this study were to identify molecular markers associated with APR to powdery mildew in common wheat Massey and to verify their association using recombinant inbred (RI) lines.
A cross was made between the powdery mildew susceptible cultivar Becker and Massey. One hundred and eighty F2:3 lines were rated for disease severity under natural pressure of powdery mildew in field. Using both restriction fragment length polymorphism (RFLP) and microsatellite markers, three quantitative trait loci (QTL), designated as QPm.vt-1B, QPm.vt-2A and QPm.vt-2B, were identified in the Becker x Massey F2:3 generation. These loci are located on chromosomes 1B, 2A and 2B, respectively, and explained 17%, 29% and 11% of the total variation among F2:3 lines for powdery mildew resistance, respectively. Cumulatively, the three QTLs explained 50% of the phenotypic variation among F2:3 lines in a multi-QTL model. The three QTLs associated with APR to powdery mildew were derived from Massey and displayed additive gene action. QPm.vt-2B also fits a recessive model for APR to powdery mildew.
In the second part of this study, 97 RI lines were developed from the Becker x Massey cross. The RI lines were evaluated for APR to powdery mildew under natural disease pressure for three years. Both single marker analysis and interval mapping confirmed the presence of the three QTLs identified in the F2:3 generation. The three QTLs, QPm.vt-1B, QPm.vt-2A and QPm.vt-2B, accounted for 15%, 26% and 15% of the variation of mean powdery mildew severity of the RI lines over three years. In a multi-QTL model, the three QTLs explained 44% of the phenotypic variation of the RI lines. The RI lines were grouped according to the genotype of the three QTLs, represented by markers GWM304a, KSUD22 and PSP3100, respectively. The RI lines with Massey alleles at all three loci had a mean disease severity of 3.4%, whereas the RI lines with Becker alleles at all three loci had a mean disease severity of 22.3%. These severity values are similar to those of the corresponding parents.
The molecular markers identified and verified as to their association with APR to powdery mildew in Massey have the potential for use in marker-assisted selection for resistance to powdery mildew and in pyramiding powdery mildew resistance genes, as well as facilitating a better understanding of the molecular basis of APR to powdery mildew. / Ph. D.
|
364 |
Desarrollo y aplicación de herramientas genómicas para la mejora de especies cucurbitáceas por calidad y resistencia a enfermedadesEsteras Gómez, Cristina 11 September 2012 (has links)
El melón (Cucumis melo) y el calabacín (Cucurbita pepo) son especies cucurbitáceas de gran importancia económica a nivel nacional y mundial. Para optimizar su producción se requiere de la obtención de nuevas variedades mejor adaptadas a los sistemas de cultivo, más resistentes frente a nuevas enfermedades o plagas y con mejores características organolépticas, que respondan a las cada vez mayores exigencias del mercado. La mejora debe realizarse de una forma eficiente y competitiva, apoyándose en los crecientes conocimientos genéticos en estas dos especies y en los últimos avances biotecnológicos. El desarrollo de herramientas genómicas con el fin de impulsar la mejora de estos cultivos es el principal objetivo de la presente Tesis doctoral.
El desarrollo de marcadores moleculares es esencial para la construcción de mapas genéticos, para la realización de una selección más eficiente, para el análisis y cartografía de QTLs (Quantitative trait loci) y para el desarrollo de líneas de premejora, además de ser una herramienta fundamental para el análisis de la biodiversidad. En esta Tesis se han desarrollo y/o validado marcadores de alta calidad, de tipo microsatélite (Simple Sequence Repeats, SSRs) y SNPs (Single Nucleotide Polymorphisms), para estas dos especies. La generación de información de secuencia, necesaria para el desarrollo de este tipo de marcadores, ha cambiado en el transcurso de los trabajos presentados en la Tesis, habiéndose abordado finalmente la secuenciación del transcriptoma de melón mediante técnicas de secuenciación de alto rendimiento (NGS, Next generation sequencing). La obtención de grandes colecciones de SSRs y SNPs en ambas especies, resultado del ensamblaje de ESTs (Expressed Sequence Tags) procedentes de secuencias Sanger previamente disponibles y de las nuevas secuencias obtenidas por secuenciación masiva, ha supuesto un gran avance para estas especies no modelo, permitiendo la construcción de mapas más densos en melón y del primer mapa ba / Esteras Gómez, C. (2012). Desarrollo y aplicación de herramientas genómicas para la mejora de especies cucurbitáceas por calidad y resistencia a enfermedades [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/17046
|
365 |
Validation of Loci Conferring Adult Plant Resistance to Powdery Mildew in Wheat Cultivar Massey and Identification of Diagnostic Molecular MarkersSikes, Tiffany Rochelle 22 May 2014 (has links)
Powdery mildew, caused by the pathogen Blumeria graminis (DC) Speer (Syn. Erysiphe graminis DC) f. sp. tritici, is a major disease of wheat (Triticum aestivum L.). Race-specific resistance is easily identified in the field due to its qualitative phenotype and it is easy to incorporate because it is inherited as a single gene. Unfortunately, this type of resistance is easily overcome by the pathogen. Traits associated with quantitative trait loci (QTL) such as adult-plant resistance (APR), have become popular with plant breeders because of their durability over a wide geographic range and time. Due to the quantitative nature of these genes, they are difficult to study requiring multiple assessments of disease development under natural conditions in more than one location over a period of several weeks. Numerous QTL for APR to powdery mildew have been mapped in independent studies in different wheat backgrounds. The wheat cultivar Massey has been the subject of several studies due to its APR to powdery mildew that has remained effective for several decades. However, it has been difficult to identity simple sequence repeat (SSR) markers that are tightly linked to the QTL for APR in Massey. Such markers give breeders an advantage by allowing them to quickly identify and select for traits that would be difficult to distinguish in the field among breeding progeny from several backgrounds. Therefore, identification of tightly linked markers associated with APR to powdery mildew is necessary so that these traits can be selected for reliably in progeny. / Master of Science
|
366 |
Investigation of winter wheat sowing date management and genetic architecture of malting quality in winter barley and milling/baking performance in soft red winter wheatMeier, Nicholas Alan 28 January 2020 (has links)
Wheat (Triticum aestivum, L) and barley (Hordeum vulgare) are widely grown as winter annual grains in a double crop rotation with soybean (Glycine max, L. Merr.) in much of the U.S. Improved management strategies and the development cultivars that meet the quality requirements of higher value end-use markets is important to increase production and profitability of winter annual grains and the double crop rotation in the Eastern U.S. In Chapter I, fifteen commercially relevant winter wheat genotypes ranging in maturity were sown in a split-plot design (sowing date=main plot, genotype=subplot) at three different sowing dates (considered to be 'very early' (20-28 days before recommended), 'early (6-11 days before recommended)', or 'recommended') and replicated three times at eight environments (site-year) from 2015-2018 in VA and KY. Grain yield, tiller estimation, heading date, protein, and 1000-kernel weight were assessed for each yield plot. At all environments, sowing earlier in the fall achieved an earlier (P<0.05) heading date, while grain yields varied depending on environment and genotype. Genotype by sowing date interactions were non-significant (P<0.05) at five site-years and significant (P<0.05) at three site-years.
Molecular markers can be associated with phenotypic traits via quantitative trait loci (QTL) mapping, these markers can be used by breeders in marker assisted selection (MAS) to indirectly select phenotypic traits that are difficult or expensive to measure. In Chapter II, the genetic architecture of end-use quality is investigated in two soft red winter wheat bi-parental (Pioneer '25R47' / 'Jamestown' and Pioneer '26R46' / 'Tribute'). Both populations were genotyped with a public 90,000 wheat iSelect SNP-Array, grown over two crop seasons at two Virginia sites, evaluated for quality traits at the USDA-ARS Soft Wheat Quality Lab (SWQL), and analyzed with QTL mapping. This chapter describes a total of 24 putative QTL that were identified on 13 different chromosomes and associated with grain characteristics, milling, and/or baking performance along with phenotypic data for both populations, other putative QTL, and transgressive progeny with exceptional flour yield and cookie diameters. A region on 3A (Qfy.vt.3A.Jtwn) is a strong candidate to be utilized for MAS in soft red winter wheat breeding programs as it explained 6.9-10.3% (Pioneer 25R47 / Jamestown) and 4.6-17.0% (Pioneer 26R46 / Tribute) of the phenotypic variation for flour yield. In Chapter III, malt quality genetic structure was investigated in two winter 'malt x feed' doubled haploid barley breeding populations. Both populations were genotyped with the iSelect InfiniumTM SNP assay consisting of 50,000 barley SNPs, grown in two to three Virginia environments (Blacksburg and Warsaw) during 2017 - 2019, and characterized for 11 phenotypic traits associated with malting quality. QTL mapping validated six previously reported regions (Mohammadi, et al., 2015, GrainGenes 3.0, 2019) that are strongly associated (LOD > 3.0) with relevant malt quality traits. Phenotypic variation for malt quality was largely and consistently explained by QTL on chromosomes 1H, 5H, and 7H in the Endeavor / VA09B-34 population and by two separate QTL on 1H in the Violetta / VA09B-34 population. A region on 4H corresponding with QDp.DiMo-4H, explained between 12.1 - 42.2% (Endeavor / VA09B-34) and 30.0 - 55.7% (Violetta / VA09B-34) of the phenotypic variation for diastatic power (DU). These QTL are recommended for MAS in order to aid breeding strategies that aim to select for improved malting characteristics in Eastern U.S. malt barley breeding material. / Doctor of Philosophy / Wheat (Triticum aestivum, L) and barley (Hordeum vulgare) are staple crops throughout the world, and are the third and fourth most produced cereals crop according to the FAO. Primarily grown for human consumption, wheat and barley provide a significant percentage of the nutritional requirements for the human populations. According to the United Nations, wheat contributes 20% of all calories consumed by humans. Barley is the primary ingredient used to make beer. Increased productivity of all cropping and livestock systems is required in order to feed a growing human population while also restoring and preserving natural ecosystems. This can be accomplished through breeding and improved cropping systems management. Planting of existing cropland more frequently is fundamental to the improvement of cropping system productivity. In much of the U.S. (southern two-thirds of the lower 48), annual winter grains such as wheat and barley can be grown over the winter and spring in between the typical corn (Zea mays subsp. mays) and soybean (Glycine max, L. Merr.) growing seasons. Therefore, producing three crops in two years, as opposed to only two. Only between 6 and 11 million acres are double cropped in the US annually, for perspective, in 2018, 89 million acres of both corn and soybeans, which can only grow in summer, were planted. Over half of the soybean (~45 million) acres in Midwestern and Southeastern states could support double cropping. This is a major opportunity to maximize output per unit area, freeing up less productive land to be restored as natural ecosystems, potentially increasing carbon sequestration and species biodiversity. Winter annual grains have a very similar composition (high carbohydrate, low protein and oil) to corn, and could fill similar end-use markets currently dominated by corn (i.e. ethanol or livestock feed). For double cropping to be more widely deployed, it must be more profitable. Increased profitability of growing three crops in two years as opposed to two must outweigh the added cost of planting, managing, harvesting, and marketing the additional winter crop. Therefore, it is important to investigate management strategies that could increase production per unit area and develop new winter annual cultivars with improved end-use characteristics in order to make the winter annual more desirable to the end-users. Chapter I investigates sowing winter wheat earlier in the fall (i.e. 1st week of Oct. or last week of Sept.) in order to achieve an earlier harvest in the spring and earlier soybean planting (yield decreases 0.5 to 1 bu/ac per day that sowing is delayed), while also offering other benefits such as better-established root systems going into winter, which improves water infiltration and reduces erosion. At all environments, sowing earlier in the fall achieved an earlier heading date, while grain yields varied depending on environment and genotype. Genotype by sowing date interactions were non-significant at five site-years and significant at three site-years. Chapters II and III investigate the genetic architecture of winter wheat and winter barley breeding populations for end-use quality traits (milling/baking and malting). This was done in order to identify molecular markers that could be used to screen breeding material for improved end-use quality. The markers could then be used to assist breeders in developing soft red winter wheat cultivars with greater flour yields/improved baking performance and winter malt barley cultivars that can be grown in the Eastern U.S. and are suitable for the craft beer market. Chapter II describes 24 genomic regions that influences milling/baking performance in two soft red winter wheat breeding populations. Chapter III describes 6 genomic regions that influence malting performance in two winter barley breeding populations.
|
367 |
Improving Breeding Selection of Seed Quality Traits for Food-Grade SoybeansEscamilla Sanchez, Diana Marcela 29 January 2018 (has links)
Natto and sprout soybeans are produced using small-seeded soybeans and their production is a high value alternative to grow grain soybeans for food in U.S. The development of soybean cultivars with improved natto and sprout quality is crucial for maintaining and increasing the soyfood market. However, there is insufficient information on sprout soybean characteristics. Therefore, the first objective of this study was to evaluate seed and sprout traits as potential selection criteria and study the storage effect on sprout quality. Seeds can be a vehicle for transmission of pathogens capable of causing human illness. That is why, the second objective was to identify seed-borne pathogens on a commercial soybean cultivar and to evaluate different seed decontamination treatments. Finally, seed coat deficiency is an undesirable trait for natto soybean seeds because it causes inferior appearance of the product. Thus, the third objective was to identify quantitative trait loci (QTL) underlying seed coat deficiency (SCD) and associated markers. Results showed that seed size, high-, average- and low-quality sprout percentage, hypocotyl thickness and length and sprout yield are the most important variables for breeding sprout cultivars; and one-year seed storage at room temperature reduced sprout quality. Fusarium, Alternaria and Diaphorte were the most frequent genera isolated from soybean seeds, and 2% calcium hypochlorite and 5% acetic acid were promising seed disinfection treatments. A stable QTL, qSCD20_1, was identified across two years explaining up to 25% of the variation of SCD; and eight molecular markers tightly linked and nearby qSCD20_1 were identified. Information presented will be helpful for sprout and natto soybean cultivar development. / Master of Science / Natto and sprout soybeans are produced using by small-seeded soybeans and their production is a high value alternative to grow grain soybeans for feed in U.S. The development of soybean cultivars with improved natto and sprout quality is crucial for maintaining and increasing the soyfood market. However, there is insufficient information on sprout soybean characteristics. Therefore, the first objective of this study was to evaluate important seed and sprout traits as potential selection criteria of soybean cultivars and study the storage effect on sprout quality. Seeds can be contaminated with fungi capable of causing human illness. So, the second objective was to identify fungus species associated with seeds of a sprout soybean cultivar and evaluate different seed disinfection treatments. Finally, seed coat deficiency is an undesirable trait for natto soybean seeds because it causes inferior appearance of the product. Thus, the third objective was to identify molecular markers associated with seed coat deficiency. Results showed that seed size, high-, average- and low-quality sprout percentage, hypocotyl thickness and length and sprout yield are the most important variables for breeding sprout cultivars; and one-year seed storage at room temperature reduced sprout quality. Fungal species that may cause human illness were isolated from sprout soybean seeds and calcium hypochlorite and acetic acid are promising seed disinfection treatment for reducing fungus incidence. Finally, eight molecular markers associated with seed coat deficiency were identified which may be potentially used in selecting natto soybean cultivars with low seed coat deficiency. Information presented will be helpful for sprout and natto soybean cultivar development.
|
368 |
Analysing sex determination in farmed fish using Next Generation DNA sequencingPalaiokostas, Christos January 2013 (has links)
The aim of the current thesis was the analysis of the genetics of sex determination of farmed fish with sexual dimorphism, using Next Generation Sequencing. Three different species of farmed fish with sex-determining systems of varying complexity were studied. Both full-sibs and more distantly related specimens of Atlantic halibut (Hippoglossus hippoglossus), Nile tilapia (Oreochromis niloticus) and European sea bass (Dicentrarchus labrax) were used for this study. Application of Restriction-site Associated DNA sequencing (RAD-seq) and double digest Restriction-site Associated DNA sequencing (ddRAD-seq), two related techniques based on next generation sequencing, allowed the identification of thousands of Single Nucleotide Polymorphisms (SNPs; > 3,000) for each of the above species. The first SNP-based genetic maps for the above species were constructed during the current study. The first evidence concerning the location of the sex-determining region of Atlantic halibut is provided in this study. In the case of Nile tilapia both novel sex-determining regions and fine mapping of the major sex-determining region are presented. In the study of European sea bass evidence concerning the absence of a major sex-determining gene was provided. Indications of putative sex-determining regions in this species are also provided. The results of the current thesis help to broaden current knowledge concerning sex determination in three important farmed fish. In addition the results of the current thesis have practical applications as well, towards the production of mono-sex stocks of those species for the aquaculture industry.
|
369 |
Decoding the complexity of natural variation for shoot growth and response to the environment in Arabidopsis thalianaTrontin, Charlotte 21 May 2013 (has links) (PDF)
Genotypes adapted to contrasting environments are expected to behave differently when placed in common controlled conditions, if their sensitivity to environmental cues or intrinsic growth behaviour are set to different thresholds, or are limited at distinct levels. This allows natural variation to be exploited as an unlimited source of new alleles or genes for the study of the genetic basis of quantitative trait variation. My doctoral work focuses on analysing natural variation for shoot growth and response to the environment in A. thaliana. Natural variation analyses aim at understanding how molecular genetic or epigenetic diversity controls phenotypic variation at different scales and times of plant development and under different environmental conditions, and how selection or demographic processes influence the frequency of those molecular variants in populations for them to get adapted to their local environment. As such, the analysis of A. thaliana natural variation can be addressed using a variety of approaches, from genetics and molecular methods to ecology and evolutionary questions. During my PhD, I got the chance to tackle several of those aspects through my contributions to three independent projects which have in common to exploit A. thaliana natural variation. The first one is the analysis of the pattern of polymorphism from a set of 102 A. thaliana accessions at the MOT1 gene coding for a molybdate transporter (an essential micronutrient) and responsible for contrasted growth and fitness among accessions in response to Mo availability in the soil. I showed at different geographical scales that MOT1 pattern of polymorphisms is not consistent with neutral evolution and shows signs of diversifying selection. This work helped reinforce the hypothesis that in some populations, mutations in MOT1 have been selected to face soils rich in Mo and potentially deleterious despite their negative effect on Mo-limiting soils. The second project consists in the characterisation and functional analysis of two putative receptor-like kinases (RLKs) identified from their effect on shoot growth specifically under mannitol-supplemented media and not in response to other osmotic constraints. The function of such RLKs in A. thaliana, which is not known to synthesize mannitol was intriguing at first but, through different experiments, we built the hypothesis that those RLKs could be activated by the mannitol produced by some pathogens such as fungi and participate to plant defensive response. The third project, in collaboration with Michel Vincentz's team from CBMEG (Brasil) and Vincent Colot (IBENS, Paris), consists in the analysis of the occurrence of natural epigenetic variants of the QQS gene in different populations from Central Asia and their possible phenotypic and adaptive consequences. Overall, these analyses of the genetic and epigenetic molecular variation leading to the biomass phenotype(s) in interaction with the environment provide clues as to how and where in the pathways adaptation is shaping natural variation.
|
370 |
Genetics of litter size and prenatal survival in pigsHernández Velasco, Silvia Clara January 2012 (has links)
Female reproductive performance is a critical component of sustainable pig production systems. There is abundant evidence of genetic variation in these traits among pig breeds. The aims of this study were to identify quantitative trait loci (QTL) affecting reproductive traits and to identify and characterise positional candidate gene(s) underlying the QTL. A Large White - Meishan F2 population was scanned for QTL with effects on reproductive traits. This analysis revealed 13 putative QTLs on seven different chromosomes with effects on five different traits: ovulation rate (OR), teat number (TN), prenatal survival (PS), total born alive (TBA) and litter size (LS). QTL for PS and LS on chromosome 8 were fine mapped and Secreted Phosphoprotein 1 (SPP1) confirmed as a candidate gene. A genome-wide association study was performed on a diverse population of different breeds and crosses lines, for reproductive traits including LS, TBA, number of stillborn piglets, and number of mummified piglets. Fourteen SNPs were found significantly associated with reproductive traits. The functional study of SPP1 examined the hypothesis that differences in foetal growth may be associated with the effectiveness of conceptus attachment, as measured by SPP1 expression. Patterns of SPP1 mRNA and protein expression in placental and uterine tissues supplying the smallest and a normal-sized foetus from the same uterus were examined in Large White-Landrace (LW-LR), Large White (LW) and Meishan (MS) females 40 and 45 of pregnancy. The smallest LW-LR foetuses tended to have a higher level of SPP1 mRNA in endometrium tissue compared to the normal-sized foetuses. However, placenta expression was higher in the normal-sized foetuses compared to the smallest ones. SPP1 protein levels in normal sized foetuses were significantly higher than in the smallest litter mates for all the tissues. Significantly higher levels of SPP1 mRNA and protein were found in MS compared to LW. In both breeds, significant differences between sizes were found in some tissues, with similar expression patterns in respect to size, for both mRNA and protein in endometrial tissues when compared to contemporary LW. In placenta, the direction of the expression differed between breeds, with a higher expression of mRNA and protein in the normal-sized MS foetuses and in the smallest sized LW foetuses. The comparison of SPP1 expression between different foetal sizes and different breeds revealed associations between breed, foetal size, and SPP1 protein, factors implicated in PS and LS. These results together with the genetic evidence indicate that the potential role of SPP1 in placental and foetal development merits further investigation.
|
Page generated in 0.0306 seconds