Spelling suggestions: "subject:"kuantum computation"" "subject:"kuantum omputation""
121 |
Categorical quantum computationPaquette, Éric Oliver January 2008 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
|
122 |
Síntese evolucionária de circuitos sequenciais inspirada nos princípios da computação quântica. / Evolutionary synthesis of sequential circuits inspired the principles of quantum computing.Marcos Paulo Mello Araujo 04 December 2008 (has links)
Esta dissertação investiga a aplicação dos algoritmos evolucionários inspirados na computação quântica na síntese de circuitos sequenciais. Os sistemas digitais sequenciais representam
uma classe de circuitos que é capaz de executar operações em uma determinada sequência.
Nos circuitos sequenciais, os valores dos sinais de saída dependem não só dos valores dos sinais
de entrada como também do estado atual do sistema. Os requisitos cada vez mais exigentes
quanto à funcionalidade e ao desempenho dos sistemas digitais exigem projetos cada vez mais
eficientes. O projeto destes circuitos, quando executado de forma manual, se tornou demorado
e, com isso, a importância das ferramentas para a síntese automática de circuitos cresceu rapidamente.
Estas ferramentas conhecidas como ECAD (Electronic Computer-Aided Design) são
programas de computador normalmente baseados em heurísticas. Recentemente, os algoritmos
evolucionários também começaram a ser utilizados como base para as ferramentas ECAD. Estas
aplicações são referenciadas na literatura como eletrônica evolucionária. Os algoritmos mais
comumente utilizados na eletrônica evolucionária são os algoritmos genéticos e a programação
genética. Este trabalho apresenta um estudo da aplicação dos algoritmos evolucionários inspirados
na computação quântica como uma ferramenta para a síntese automática de circuitos
sequenciais. Esta classe de algoritmos utiliza os princípios da computação quântica para melhorar
o desempenho dos algoritmos evolucionários. Tradicionalmente, o projeto dos circuitos
sequenciais é dividido em cinco etapas principais: (i) Especificação da máquina de estados;
(ii) Redução de estados; (iii) Atribuição de estados; (iv) Síntese da lógica de controle e (v)
Implementação da máquina de estados. O Algoritmo Evolucionário Inspirado na Computação
Quântica (AEICQ) proposto neste trabalho é utilizado na etapa de atribuição de estados. A
escolha de uma atribuição de estados ótima é tratada na literatura como um problema ainda
sem solução. A atribuição de estados escolhida para uma determinada máquina de estados
tem um impacto direto na complexidade da sua lógica de controle. Os resultados mostram que
as atribuições de estados obtidas pelo AEICQ de fato conduzem à implementação de circuitos
de menor complexidade quando comparados com os circuitos gerados a partir de atribuições
obtidas por outros métodos. O AEICQ e utilizado também na etapa de síntese da lógica de
controle das máquinas de estados. Os circuitos evoluídos pelo AEICQ são otimizados segundo
a área ocupada e o atraso de propagação. Estes circuitos são compatíveis com os circuitos
obtidos por outros métodos e em alguns casos até mesmo superior em termos de área e de
desempenho, sugerindo que existe um potencial de aplicação desta classe de algoritmos no
projeto de circuitos eletrônicos. / This thesis investigates the application of quantum inspired evolutionary algorithms in
the synthesis of sequential circuits. Sequential digital systems represent a class of circuit that
is able to execute operations in a particular sequence. In sequential circuits, the values of
output signals not only depend on the values of input signals but also on the current state of
the system. The increasingly high requirements regarding the functionality and performance of
digital systems demand more efficient designs. The design of these circuits, when implemented
manually, became slow and thus the importance of tools for automatic synthesis of circuits
grew rapidly. These tools known as ECAD (Electronic Computer-Aided Design) are computer
programs usually based on heuristics. Recently, evolutionary algorithms also began to be
used as a basis in ECAD tools developing. These applications are referenced in literature as
evolutionary electronics. The algorithms most commonly used in evolutionary electronics are
genetic algorithms and genetic programming. This work presents a study of the application
of quantum inspired evolutionary algorithms as a tool for automatic synthesis of sequential
circuits. This class of algorithms uses the principles of quantum computing to improve the
performance of evolutionary algorithms. Traditionally, the design of sequential circuits is divided
into five main steps: (i) State machine specification; (ii) Reduction of states; (iii) State
assignment; (iv) Control logic synthesis and (v) Implementation of the state machine. The
proposed algorithm AEICQ is used in the state assignment design step. The choice of an
optimal state assignment is treated in the literature as an issue still unresolved. The state
assignment chosen for a particular state machine has a direct impact on the complexity of its
control logic. The results show that the state assignment obtained by AEICQ in fact leads
to the implementation of circuits of less complexity when compared with the ones generated
from assignments obtained by other methods. The AEICQ is also used in the control logic
synthesis of the state machine. The circuits evolved by AEICQ are optimized according to
the area occupied and the propagation delay. These circuits are compatible with the circuits
obtained by other methods and in some cases even higher in terms of area and performance,
suggesting that there is a potential for application of this class of algorithms in the design of
electronic circuits.
|
123 |
Marches quantiques et mécanique quantique relativiste / Quantum walks and relativistic quantum mechanicsForets Irurtia, Marcelo Alejandro 10 December 2015 (has links)
Cette thèse étudie deux modèles de calcul: les marches quantiques (QW) et les automates cellulaires quantiques (QCA), en vue de les appliquer en simulation quantique. Ces modèles ont deux avantages stratégiques pour aborder ce problème: d'une part, ils constituent un cadre mathématique privilégié pour coder la description du système physique à simuler; d'autre part, ils correspondent à des architectures expérimentalement réalisables.Nous effectuons d'abord une analyse des QWs en tant que schéma numérique pour l'équation de Dirac, en établissant leur borne d'erreur globale et leur taux de convergence. Puis nous proposons une notion de transformée de Lorentz discrète pour les deux modèles, QW et QCA, qui admet une représentation diagrammatique s'exprimant par des règles locales et d'équivalence de circuits. Par ailleurs, nous avons caractérisé la limite continue d'une grande classe de QWs, et démontré qu'elle correspond à une classe d'équations aux dérivées partielles incluant l'équation de Dirac massive en espace-temps courbe de $(1+1)$-dimensions.Finalement, nous étudions le secteur à deux particules des automates cellulaires quantiques. Nous avons trouvé les conditions d'existence du spectre discret (interprétable comme une liaison moléculaire) pour des interactions à courte et longue portée, à travers des techniques perturbatives et d'analyse spectrale des opérateurs unitaires. / This thesis is devoted to the development of two well-known models of computation for their application in quantum computer simulations. These models are the quantum walk (QW) and quantum cellular automata (QCA) models, and they constitute doubly strategic topics in this respect. First, they are privileged mathematical settings in which to encode the description of the actual physical system to be simulated. Second, they offer an experimentally viable architecture for actual physical devices performing the simulation.For QWs, we prove precise error bounds and convergence rates of the discrete scheme towards the Dirac equation, thus validating the QW as a quantum simulation scheme. Furthermore, for both models we formulate a notion of discrete Lorentz covariance, which admits a diagrammatic representation in terms of local, circuit equivalence rules. We also study the continuum limit of a wide class of QWs, and show that it leads to a class of PDEs which includes the Hamiltonian form of the massive Dirac equation in (1+1)-dimensional curved spacetime.Finally, we study the two particle sector of a QCA. We find the conditions for the existence of discrete spectrum (interpretable as molecular binding) for short-range and for long-range interactions. This is achieved using perturbation techniques of trace class operators and spectral analysis of unitary operators.
|
124 |
Síntese evolucionária de circuitos sequenciais inspirada nos princípios da computação quântica. / Evolutionary synthesis of sequential circuits inspired the principles of quantum computing.Marcos Paulo Mello Araujo 04 December 2008 (has links)
Esta dissertação investiga a aplicação dos algoritmos evolucionários inspirados na computação quântica na síntese de circuitos sequenciais. Os sistemas digitais sequenciais representam
uma classe de circuitos que é capaz de executar operações em uma determinada sequência.
Nos circuitos sequenciais, os valores dos sinais de saída dependem não só dos valores dos sinais
de entrada como também do estado atual do sistema. Os requisitos cada vez mais exigentes
quanto à funcionalidade e ao desempenho dos sistemas digitais exigem projetos cada vez mais
eficientes. O projeto destes circuitos, quando executado de forma manual, se tornou demorado
e, com isso, a importância das ferramentas para a síntese automática de circuitos cresceu rapidamente.
Estas ferramentas conhecidas como ECAD (Electronic Computer-Aided Design) são
programas de computador normalmente baseados em heurísticas. Recentemente, os algoritmos
evolucionários também começaram a ser utilizados como base para as ferramentas ECAD. Estas
aplicações são referenciadas na literatura como eletrônica evolucionária. Os algoritmos mais
comumente utilizados na eletrônica evolucionária são os algoritmos genéticos e a programação
genética. Este trabalho apresenta um estudo da aplicação dos algoritmos evolucionários inspirados
na computação quântica como uma ferramenta para a síntese automática de circuitos
sequenciais. Esta classe de algoritmos utiliza os princípios da computação quântica para melhorar
o desempenho dos algoritmos evolucionários. Tradicionalmente, o projeto dos circuitos
sequenciais é dividido em cinco etapas principais: (i) Especificação da máquina de estados;
(ii) Redução de estados; (iii) Atribuição de estados; (iv) Síntese da lógica de controle e (v)
Implementação da máquina de estados. O Algoritmo Evolucionário Inspirado na Computação
Quântica (AEICQ) proposto neste trabalho é utilizado na etapa de atribuição de estados. A
escolha de uma atribuição de estados ótima é tratada na literatura como um problema ainda
sem solução. A atribuição de estados escolhida para uma determinada máquina de estados
tem um impacto direto na complexidade da sua lógica de controle. Os resultados mostram que
as atribuições de estados obtidas pelo AEICQ de fato conduzem à implementação de circuitos
de menor complexidade quando comparados com os circuitos gerados a partir de atribuições
obtidas por outros métodos. O AEICQ e utilizado também na etapa de síntese da lógica de
controle das máquinas de estados. Os circuitos evoluídos pelo AEICQ são otimizados segundo
a área ocupada e o atraso de propagação. Estes circuitos são compatíveis com os circuitos
obtidos por outros métodos e em alguns casos até mesmo superior em termos de área e de
desempenho, sugerindo que existe um potencial de aplicação desta classe de algoritmos no
projeto de circuitos eletrônicos. / This thesis investigates the application of quantum inspired evolutionary algorithms in
the synthesis of sequential circuits. Sequential digital systems represent a class of circuit that
is able to execute operations in a particular sequence. In sequential circuits, the values of
output signals not only depend on the values of input signals but also on the current state of
the system. The increasingly high requirements regarding the functionality and performance of
digital systems demand more efficient designs. The design of these circuits, when implemented
manually, became slow and thus the importance of tools for automatic synthesis of circuits
grew rapidly. These tools known as ECAD (Electronic Computer-Aided Design) are computer
programs usually based on heuristics. Recently, evolutionary algorithms also began to be
used as a basis in ECAD tools developing. These applications are referenced in literature as
evolutionary electronics. The algorithms most commonly used in evolutionary electronics are
genetic algorithms and genetic programming. This work presents a study of the application
of quantum inspired evolutionary algorithms as a tool for automatic synthesis of sequential
circuits. This class of algorithms uses the principles of quantum computing to improve the
performance of evolutionary algorithms. Traditionally, the design of sequential circuits is divided
into five main steps: (i) State machine specification; (ii) Reduction of states; (iii) State
assignment; (iv) Control logic synthesis and (v) Implementation of the state machine. The
proposed algorithm AEICQ is used in the state assignment design step. The choice of an
optimal state assignment is treated in the literature as an issue still unresolved. The state
assignment chosen for a particular state machine has a direct impact on the complexity of its
control logic. The results show that the state assignment obtained by AEICQ in fact leads
to the implementation of circuits of less complexity when compared with the ones generated
from assignments obtained by other methods. The AEICQ is also used in the control logic
synthesis of the state machine. The circuits evolved by AEICQ are optimized according to
the area occupied and the propagation delay. These circuits are compatible with the circuits
obtained by other methods and in some cases even higher in terms of area and performance,
suggesting that there is a potential for application of this class of algorithms in the design of
electronic circuits.
|
125 |
On The Fourier Transform Approach To Quantum Error ControlKumar, Hari Dilip 07 1900 (has links) (PDF)
Quantum mechanics is the physics of the very small. Quantum computers are devices that utilize the power of quantum mechanics for their computational primitives. Associated to each quantum system is an abstract space known as the Hilbert space. A subspace of the Hilbert space is known as a quantum code. Quantum codes allow to protect the computational state of a quantum computer against decoherence errors.
The well-known classes of quantum codes are stabilizer or additive codes, non-additive codes and Clifford codes. This thesis aims at demonstrating a general approach to the construction of the various classes of quantum codes. The framework utilized is the Fourier transform over finite groups.
The thesis is divided into four chapters. The first chapter is an introduction to basic quantum mechanics, quantum computation and quantum noise. It lays the foundation for an understanding of quantum error correction theory in the next chapter.
The second chapter introduces the basic theory behind quantum error correction. Also, the various classes and constructions of active quantum error-control codes are introduced.
The third chapter introduces the Fourier transform over finite groups, and shows how it may be used to construct all the known classes of quantum codes, as well as a class of quantum codes as yet unpublished in the literature. The transform domain approach was originally introduced in (Arvind et al., 2002). In that paper, not all the classes of quantum codes were introduced. We elaborate on this work to introduce the other classes of quantum codes, along with a new class of codes, codes from idempotents in the transform domain.
The fourth chapter details the computer programs that were used to generate and test for the various code classes. Code was written in the GAP (Groups, Algorithms, Programming) computer algebra package.
The fifth and final chapter concludes, with possible directions for future work.
References cited in the thesis are attached at the end of the thesis.
|
126 |
Optimization Of NMR Experiments Using Genetic Algorithm : Applications In Quantum Infomation Processing, Design Of Composite Operators And Quantitative ExperimentsManu, V S 12 1900 (has links) (PDF)
Genetic algorithms (GA) are stochastic global search methods based on the
mechanics of natural biological evolution, proposed by John Holland in 1975. Here
in this thesis, we have exploited possible utilities of Genetic Algorithm optimization
in Nuclear Magnetic Resonance (NMR) experiments. We have performed
(i ) Pulse sequence generation and optimization for NMR Quantum Information
Processing, (ii ) efficient creation of NOON states, (iii ) Composite operator design
and (iv ) delay optimization for refocused quantitative INEPT. We have generated
time optimal as well as robust pulse sequences for popular quantum gates. A
Matlab package is developed for basic Target unitary operator to pulse sequence
optimization and is explained with an example.
Chapter 1 contains a brief introduction to NMR, Quantum computation and Genetic
algorithm optimization. Experimental unitary operator decomposition using
Genetic Algorithm is explained in Chapter 2. Starting from a two spin homonu-
clear system (5-Bromofuroic acid), we have generated hard pulse sequences for
performing (i ) single qubit rotation, (ii ) controlled NOT gates and (iii ) pseudo
pure state creation, which demonstrates universal quantum computation in such
systems. The total length of the pulse sequence for the single qubit rotation of an
angle π/2 is less than 500µs, whereas the conventional method (using a selective
soft pulse) would need a 2ms shaped pulse. This substantial shortening in time
can lead to a significant advantage in quantum circuits. We also demonstrate the
creation of Long Lived Singlet State and other Bell states, directly from thermal
equilibrium state, with the shortest known pulse sequence. All the pulse sequences
generated here are generic i.e., independent of the system and the spectrometer.
We further generalized this unitary operator decomposition technique for a variable
operators termed as Fidelity Profile Optimization (FPO) (Chapter 3) and
performed quantum simulations of Hamiltonian such as Heisenberg XY interaction
and Dzyaloshinskii-Moriya interaction. Exact phase (φ) dependent experimental
unitary decompositions of Controlled-φ and Controlled Controlled-φ are solved
using first order FPO. Unitary operator decomposition for experimental quantum
simulation of Dzyaloshinskii-Moriya interaction in the presence of Heisenberg XY
interaction is solved using second order FPO for any relative strengths of interactions
(γ) and evolution time (τ ). Experimental gate time for this decomposition
is invariant under γ or τ , which can be used for relaxation independent studies of
the system dynamics. Using these decompositions, we have experimentally verified
the entanglement preservation mechanism suggested by Hou et al. [Annals of
Physics, 327 292 (2012)].
NOON state or Schrodinger cat state is a maximally entangled N qubit state
with superposition of all individual qubits being at |0 and being at |1 . NOON
states have received much attention recently for their high precession phase
measurements, which enables the design of high sensitivity sensors in optical interfer-
ometry and NMR [Jones et al. Science, 324 1166(2009)]. We have used Genetic
algorithm optimization for efficient creation of NOON states in NMR (Chapter 4).
The decompositions are, (i ) a minimal in terms of required experimental resources
– radio frequency pulses and delays – and have (ii ) good experimental fidelity.
A composite pulse is a cluster of nearly connected rf pulses which emulate the
effect of a simple spin operator with robust response over common experimental
imperfections. Composite pulses are mainly used for improving broadband de-
coupling, population inversion, coherence transfer and in nuclear overhauser effect
experiments. Composite operator is a generalized idea where a basic operator
(such as rotation or evolution of zz coupling) is made robust against common
experimental errors (such as inhomogeneity / miscalibration of rf power or errror
in evaluation of zz coupling strength) by using a sequence of basic operators
available for the system. Using Genetic Algorithm optimization, we have designed
and experimentally verified following composite operators, (i ) broadband rotation
pulses, (ii ) rf inhomogeneity compensated rotation pulses and (iii ) zz evolution
operator with robust response over a range of zz coupling strengths (Chapter 5).
We also performed rf inhomogeneity compensated Controlled NOT gate.
Extending Genetic Algorithm optimization in classical NMR applications, we have
improved the quantitative refocused constant-time INEPT experiment (Q-INEPT-
CT) of M¨kel¨ et al. [JMR 204(2010) 124-130] with various optimization constraints
. The improved ‘average polarization transfer’ and ‘min-max difference’
of new delay sets effectively reduces the experimental time by a factor of two
(compared with Q-INEPT-CT, M¨kel¨ et al.) without compromising on accuracy
(Chapter 6). We also introduced a quantitative spectral editing technique based
on average polarization transfer. These optimized quantitative experiments are
also described in Chapter 6.
Time optimal pulse sequences for popular quantum gates such as, (i ) Controlled
Hadamard (C-H) gate, (ii ) Controlled-Controlled-NOT (CCNOT) Gate and (iii )
Controlled SWAP (C-S) gate are optimized using Genetic Algorithm (Appendix.
A). We also generated optimal sequences for Quantum Counter circuits, Quantum
Probability Splitter circuits and efficient creation of three spin W state. We
have developed a Matlab package based on GA optimization for three spin target
operator to pulse sequence generator. The package is named as UOD (Unitary
Operator Decomposition) is explained with an example of Controlled SWAP gate
in Appendix. B.
An algorithm based on quantum phase estimation, which discriminates quantum
states non-destructively within a set of arbitrary orthogonal states, is described
and experimentally verified by a NMR quantum information processor (Appendix.
C). The procedure is scalable and can be applied to any set of orthogonal states.
Scalability is demonstrated through Matlab simulation.
|
127 |
Quantum Emulation with Probabilistic ComputersShuvro Chowdhury (14030571) 31 October 2022 (has links)
<p>The recent groundbreaking demonstrations of quantum supremacy in noisy intermediate scale quantum (NISQ) computing era has triggered an intense activity in establishing finer boundaries between classical and quantum computing. In this dissertation, we use established techniques based on quantum Monte Carlo (QMC) to map quantum problems into probabilistic networks where the fundamental unit of computation, p-bit, is inherently probabilistic and can be tuned to fluctuate between ‘0’ and ‘1’ with desired probability. We can view this mapped network as a Boltzmann machine whose states each represent a Feynman path leading from an initial configuration of q-bits to a final configuration. Each such path, in general, has a complex amplitude, ψ which can be associated with a complex energy. The real part of this energy can be used to generate samples of Feynman paths in the usual way, while the imaginary part is accounted for by treating the samples as complex entities, unlike ordinary Boltzmann machines where samples are positive. This mapping of a quantum circuit onto a Boltzmann machine with complex energies should be particularly useful in view of the advent of special-purpose hardware accelerators known as Ising Machines which can obtain a very large number of samples per second through massively parallel operation. We also demonstrate this acceleration using a recently used quantum problem and speeding its QMC simulation by a factor of ∼ 1000× compared to a highly optimized CPU program. Although this speed-up has been demonstrated using a graph colored architecture in FPGA, we project another ∼ 100× improvement with an architecture that utilizes clockless analog circuits. We believe that this will contribute significantly to the growing efforts to push the boundaries of the simulability of quantum circuits with classical/probabilistic resources and comparing them with NISQ-era quantum computers. </p>
|
128 |
Interactive quantum information theoryTouchette, Dave 04 1900 (has links)
La théorie de l'information quantique s'est développée à une vitesse fulgurante au cours des vingt dernières années, avec des analogues et extensions des théorèmes de codage de source et de codage sur canal bruité pour la communication unidirectionnelle. Pour la communication interactive, un analogue quantique de la complexité de la communication a été développé, pour lequel les protocoles quantiques peuvent performer exponentiellement mieux que les meilleurs protocoles classiques pour certaines tâches classiques. Cependant, l'information quantique est beaucoup plus sensible au bruit que l'information classique. Il est donc impératif d'utiliser les ressources quantiques à leur plein potentiel.
Dans cette thèse, nous étudions les protocoles quantiques interactifs du point de vue de la théorie de l'information et étudions les analogues du codage de source et du codage sur canal bruité. Le cadre considéré est celui de la complexité de la communication: Alice et Bob veulent faire un calcul quantique biparti tout en minimisant la quantité de communication échangée, sans égard au coût des calculs locaux. Nos résultats sont séparés en trois chapitres distincts, qui sont organisés de sorte à ce que chacun puisse être lu indépendamment.
Étant donné le rôle central qu'elle occupe dans le contexte de la compression interactive, un chapitre est dédié à l'étude de la tâche de la redistribution d'état quantique. Nous prouvons des bornes inférieures sur les coûts de communication nécessaires dans un contexte interactif. Nous prouvons également des bornes atteignables avec un seul message, dans un contexte d'usage unique.
Dans un chapitre subséquent, nous définissons une nouvelle notion de complexité de l'information quantique. Celle-ci caractérise la quantité d'information, plutôt que de communication, qu'Alice et Bob doivent échanger pour calculer une tâche bipartie. Nous prouvons beaucoup de propriétés structurelles pour cette quantité, et nous lui donnons une interprétation opérationnelle en tant que complexité de la communication quantique amortie. Dans le cas particulier d'entrées classiques, nous donnons une autre caractérisation permettant de quantifier le coût encouru par un protocole quantique qui oublie de l'information classique. Deux applications sont présentées: le premier résultat général de somme directe pour la complexité de la communication quantique à plus d'une ronde, ainsi qu'une borne optimale, à un terme polylogarithmique près, pour la complexité de la communication quantique avec un nombre de rondes limité pour la fonction « ensembles disjoints ».
Dans un chapitre final, nous initions l'étude de la capacité interactive quantique pour les canaux bruités. Étant donné que les techniques pour distribuer de l'intrication sont bien étudiées, nous nous concentrons sur un modèle avec intrication préalable parfaite et communication classique bruitée. Nous démontrons que dans le cadre plus ardu des erreurs adversarielles, nous pouvons tolérer un taux d'erreur maximal de une demie moins epsilon, avec epsilon plus grand que zéro arbitrairement petit, et ce avec un taux de communication positif. Il s'ensuit que les canaux avec bruit aléatoire ayant une capacité positive pour la transmission unidirectionnelle ont une capacité positive pour la communication interactive quantique.
Nous concluons avec une discussion de nos résultats et des directions futures pour ce programme de recherche sur une théorie de l'information quantique interactive. / Quantum information theory has developed tremendously over the past two decades, with analogues and extensions of the source coding and channel coding theorems for unidirectional communication. Meanwhile, for interactive communication, a quantum analogue of communication complexity has been developed, for which quantum protocols can provide exponential savings over the best possible classical protocols for some classical tasks. However, quantum information is much more sensitive to noise than classical information. It is therefore essential to make the best use possible of quantum resources.
In this thesis, we take an information-theoretic point of view on interactive quantum
protocols and study the interactive analogues of source compression and
noisy channel coding.
The setting we consider is that of quantum communication complexity:
Alice and Bob want to perform some joint quantum computation while
minimizing the required amount of communication.
Local computation is deemed free.
Our results are split
into three distinct chapters, and these are organized in such a way that each can
be read independently.
Given its central role in the context of interactive compression, we devote a chapter
to the task of quantum state redistribution. In particular, we prove lower
bounds on its communication cost that are robust in the context of interactive communication.
We also prove one-shot, one-message achievability bounds.
In a subsequent chapter, we define a new, fully quantum notion of information
cost for interactive protocols and a corresponding notion of information complexity for bipartite tasks.
It characterizes how much quantum information, rather than quantum
communication, Alice and Bob must exchange in order to implement a given bipartite task.
We prove many structural properties for these quantities, and provide an operational interpretation
for quantum information complexity as the amortized quantum communication complexity.
In the special case of classical inputs, we provide an alternate characterization of information
cost that provides an answer to the following question about quantum protocols:
what is the cost of forgetting classical information?
Two applications are presented: the first general multi-round direct-sum theorem for quantum protocols,
and a tight lower bound, up to polylogarithmic terms, for the bounded-round quantum communication complexity
of the disjointness function.
In a final chapter, we initiate the study of the interactive quantum capacity of noisy channels. Since techniques to distribute
entanglement are well-studied, we focus on a model with perfect pre-shared entanglement and noisy classical communication.
We show that even in the harder setting of adversarial errors, we can tolerate a provably maximal error rate of one half minus epsilon, for an arbitrarily small epsilon greater than zero, at positive communication rates. It then follows that random noise channels with positive capacity for unidirectional transmission also have positive interactive quantum capacity.
We conclude with a discussion of our results and further research directions in interactive quantum information theory.
|
129 |
Autonomous quantum error correction with superconducting qubits / Vers le calcul quantique tolérant à l’erreur adapté aux expériences en circuit QEDCohen, Joachim 03 February 2017 (has links)
Dans cette thèse, nous développons plusieurs outils pour la Correction d’Erreur Quantique (CEQ) autonome avec les qubits supraconducteurs.Nous proposons un schéma de CEQ autonome qui repose sur la technique du « reservoir engineering », dans lequel trois qubits de type transmon sont couplés à un ou plusieurs modes dissipatifs. Grâce à la mise au point d’une interaction effective entre les systèmes, l’entropie créée par les éventuelles erreurs est évacuée à travers les modes dissipatifs.La deuxième partie de ce travail porte sur un type de code récemment développé, le code des chats, à travers lequel l’information logique est encodée dans le vaste espace de Hilbert d’un oscillateur harmonique. Nous proposons un protocole pour réaliser des mesures continues et non-perturbatrices de la parité du nombre de photons dans une cavité micro-onde, ce qui correspond au syndrome d’erreur pour le code des chats. Enfin, en utilisant les résultats précédents, nous présentons plusieurs protocoles de CEQ continus et/ou autonomes basés sur le code des chats. Ces protocoles offrent une protection robuste contre les canaux d’erreur dominants en présence de dissipation stimulée à plusieurs photons. / In this thesis, we develop several tools in the direction of autonomous Quantum Error Correction (QEC) with superconducting qubits. We design an autonomous QEC scheme based on quantum reservoir engineering, in which transmon qubits are coupled to lossy modes. Through an engineered interaction between these systems, the entropy created by eventual errors is evacuated via the dissipative modes.The second part of this work focus on the recently developed cat codes, through which the logical information is encoded in the large Hilbert space of a harmonic oscillator. We propose a scheme to perform continuous and quantum non-demolition measurements of photon-number parity in a microwave cavity, which corresponds to the error syndrome in the cat code. In our design, we exploit the strongly nonlinear Hamiltonian of a highimpedance Josephson circuit, coupling ahigh-Q cavity storage cavity mode to a low-Q readout one. Last, as a follow up of the above results, we present several continuous and/or autonomous QEC schemes using the cat code. These schemes provide a robust protection against dominant error channels in the presence of multi-photon driven dissipation.
|
130 |
Role of Nonlocality and Counterfactuality in Quantum CryptographyAkshatha Shenoy, H January 2014 (has links) (PDF)
Quantum cryptography is arguably the most successfully applied area of quantum information theory. In this work, We invsetigate the role of quantum indistinguishability in random number
generation, quantum temporal correlations, quantum nonlocality and counterfactuality for quantum cryptography. We study quantum protocols for key distribution, and their security in the conventional setting, in the counterfactual paradigm, and finally also in the device-independent scenario as applied to prepare-and-measure schemes.
We begin with the interplay of two essential non-classical features like quantum indeterminism and quantum indistinguishability via a process known as bosonic stimulation is discussed. It
is observed that the process provides an efficient method for macroscopic extraction of quantum randomness.
Next, we propose two counterfactual cryptographic protocols, in which a secret key bit is generated even without the physical transmission of a particle. The first protocol is semicounterfactual in the sense that only one of the key bits is generated using interaction-free
measurement. This protocol departs fundamentally from the original counterfactual key distribution protocol in not encoding secret bits in terms of photon polarization. We discuss how the security in the protocol originates from quantum single-particle non-locality. The second protocol is designed for the crypto-task of certificate authorization, where a trusted third party authenticates an entity (e.g., bank) to a client. We analyze the security of both protocols under various general incoherent attack models.
The next part of our work includes study of quantum temporal correlations. We consider the use of the Leggett-Garg inequalities for device-independent security appropriate for prepare-and-measure protocols subjected to the higher dimensional attack that would completely undermine standard BB84.
In the last part, we introduce the novel concept of nonlocal subspaces constructed using the graph state formalism, and propose their application for quantum information splitting. In particular, we use the stabilizer formalism of graph states to construct degenerate Bell operators,
whose eigenspace determines the nonlocal subspace, into which a quantum secret is encoded and shared among an authorized group of agents, or securely transmitted to a designated secret retriever. The security of our scheme arises from the monogamy of quantum correlations. The quantum violation of the Bell-type inequality here is to its algebraic maximum, making this approach inherently suitable for the device-independent scenario.
|
Page generated in 0.1158 seconds